Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.7)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 3, May-June, p. 391–401

Publication type: review article

Language: English

Fibroblast Growth Factor 23 – Structure, Function and Role in Kidney Diseases

Czynnik wzrostu fibroblastów 23 – budowa, czynność i znaczenie w patogenezie chorób nerek

Piotr Kocełak1,, Magdalena Olszanecka-Glinianowicz1,, Jerzy Chudek1,

1 Department of Pathophysiology, Medical University of Silesia, Katowice, Poland

Abstract

The fibroblast growth factor (FGF) family comprises a number of polypeptides which share a common homology core region. FGF-23, produced by osteoblasts and osteocytes, belongs to the FGF-19 subfamily and serves as the main phosphatonine. Two forms of circulating FGF-23 are detectable in serum: full-length FGF-23 – intact FGF-23 (iFGF-23), which is biologically active, and the inactive C-terminal FGF-23 (cFGF-23). FGF-23 with a coreceptor (Klotho protein) inhibits renal phosphate reabsorption and synthesis of calcitriol by reducing 1α-hydroxylase (CYP27B1) activity, reducing vitamin D-dependent phosphate intestinal absorption. High phosphorus intake, 1,25-dihydroxyvitamin D3 and PTH are the main stimuli for FGF-23 secretion. Impaired FGF-23 metabolism is involved in phosphate disturbances manifesting as rickets or osteomalacia or increased tissue calcinosis. FGF-23 may be also produced by some tumors leading to hypophosphatemia. Both cFGF-23 and iFGF-23 concentrations start to increase with mild impairment of the glomerular filtration rate in stage 2 or 3 of chronic kidney disease (CKD) as a consequence of the increased FGF-23 production. It seems that enhanced FGF-23 secretion may constitute a protective mechanism against enhanced phosphate accumulation in the early stages of CKD. However, it may lead to calcitriol deficiency and escalation of secondary hyperparathyroidism. Increased FGF-23 level is supposed to be an independent factor increasing mortality of CKD patients. There is ambiguous data if FGF-23 only reflects disturbances in calcium-phosphate metabolism or if it exerts a detrimental effect itself by diminishing calcitriol synthesis, inducing cell proliferation or acting through low-affinity, Klotho-independent receptors in the heart and endothelium. So far, little evidence supports direct FGF-23 toxicity.

Streszczenie

Rodzina czynnika wzrostu fibroblastów (FGF) obejmuje kilkanaście peptydów zawierających wspólny, homologiczny region. FGF-23, należący do podrodziny FGF-19, który jest wydzielany przez osteoblasty oraz osteocyty, i pełni rolę głównej fosfatoniny. W osoczu peptyd ten jest wykrywany w dwóch postaciach: o pełnej długości FGF-23 (intact FGF – iFGF-23), aktywnej biologicznie, oraz C-końcowych fragmentów FGF-23 (c-FGF-23). FGF-23 przy udziale koreceptora, białka Klotho, hamuje reabsorpcję zwrotną fosforanów w cewkach nerkowych oraz syntezę kalcytriolu przez hamowanie aktywności 1α-hydroksylazy (CYP27B1), zmniejszając jelitowe wchłanianie wapnia. Duża podaż fosforanów w diecie, parathormon oraz 1,25-dihydroksywitamina D3 są głównymi bodźcami stymulującymi wydzielanie FGF-23. Nieprawidłowości metabolizmu FGF-23 prowadzą do zaburzeń gospodarki fosforanowej objawiających się krzywicą lub osteomalacją, oraz wapnieniem tkanek miękkich. FGF-23 może być także wydzielany przez komórki nowotworowe, powodując występowanie przewlekłej hipofosfatemii. Zwiększone wydzielanie FGF-23 prowadzi do wzrostu stężenia zarówno cFGF-23, jak i iFGF-23 już przy umiarkowanym upośledzeniu czynności wydalniczej nerek, w fazie 2. i 3. przewlekłej choroby nerek (p.ch.n.). Wydaje się prawdopodobne, że jest to mechanizm kompensacyjny, chroniący organizm przed kumulacją fosforanów. Zwiększenie stężenia FGF-23 przyczynia się jednak do niedoboru kalcytriolu oraz nasilenia wtórnej nadczynności przytarczyc. Przypuszcza się, że zwiększone stężenie FGF-23 może być niezależnym czynnikiem ryzyka zwiększonej śmiertelności u pacjentów z p.ch.n., dotychczas opublikowane dane są jednak niejednoznaczne. Być może stężenie FGF-23 u tych chorych odzwierciedla jedynie zaburzenia gospodarki wapniowo-fosforanowej i przez stymulację receptorów o małym powinowactwie w mięśniu sercowym i śródbłonku oraz hamowanie syntezy kalcytriolu nasila proliferację komórek, przez co pośrednio przyczynia się do powikłań p.ch.n. Ostatnio pojawiły się pierwsze dowody wskazujące na bezpośrednie toksyczne działanie FGF-23.

Key words

FGF-23, chronic kidney disease, Klotho protein

Słowa kluczowe

FGF-23, przewlekła choroba nerek, białko Klotho

References (92)

  1. Yamashita T, Yoshioka M, Itoh N: Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 2000, 277, 494–498.
  2. Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, Xu C, Neubert TA, Zhang F, Linhardt RJ, Yu X, White KE, Inagaki T, Kliewer SA, Yamamoto M, Kurosu H, Ogawa Y, Kuo-o M, Lanske B, Razzaque MS, Mohammadi M: Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Moll Cell Biol 2007, 27, 3417–3428.
  3. Itoh N, Ornitz D: Evolution of the FGF and FGFr gene families. Trends Gen 2004, 20, 563–569.
  4. Quarles LD: Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 2008, 118, 3820–3828.
  5. Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, Waguespack S, Gupta A, Hannon T, Econs MJ, Bianco P, Gehron Robey P: FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003, 112, 683–692.
  6. Sitara D, Razzaque M, Hesse M, Yoganathan S, Taquchi T, Erben RG, Juppner H, Lanske B: Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 2004, 23, 421–432.
  7. Shimada T, Hasegawa Y, Yamazaki, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T: FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004, 19, 429–435.
  8. Yamashita T: Structural and biochemical properties of fibroblast growth factor 23. Ther Apher Dial 2005, 9, 313–318.
  9. Benet-Pages A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM: FGF 23 is processed by proprotein convertases but not by PHEX. Bone 2004, 35, 455–462.
  10. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, Takeuchi Y, Fujita T, Nakahara K, Yamashita T, Fukumoto S: Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 2002, 87, 4957–4960.
  11. Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB: Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 2003, 64, 2271–2279.
  12. Khosravi A, Cutler C, Kelly M, Chang R, Royal RE, Sherry RM, Wodajo FM, Fedarko NS, Collins MT: Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab 2007, 92, 2374–2377.
  13. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD: Pathogenic role of Fgf 23 in Hyp mice. Am J Physiol Endocrinol Metab 2006, 291, E38–E49.
  14. Givol D, Yayon A: Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J 1992, 6, 3362–3369.
  15. Jaye M, Schlessinger J, Dionne C: Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochem Biophys Acta 1992, 1135, 185–199.
  16. Powers CJ, McLeskey SW, Wellstein A: Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000, 7, 165–197.
  17. Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell 2000, 103, 2211–2225.
  18. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T: Klotho converts canonical FGF receptor into a specific receptor for FDF23. Nature 2006, 444, 770–774.
  19. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kro-o M: Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006, 281, 6120–6123.
  20. Kuro-o M, Matsumara Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-lida T, Nishikawa S, Nagai R, Nabeshima Y: Mutation of the mouse klotho gene leads to a syndrome resembling aging. Nature 1997, 390, 45–51.
  21. Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M: FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 2009, 297, F282–F291.
  22. Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD: FGFR3 and FGFR4 do not mediate renal effects of FGF23. J Am Soc Nephrol 2008, 19, 2324–2350.
  23. Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW: Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010, 24, 3438–3450.
  24. Hu MC, Shi M, Zhang J, Quiñones H, Griffith C, Kuro-o M, Moe OW: Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 2011, 22, 124–136.
  25. Sugiura H, Yoshida T, Tsuchiya K, Mitobe M, Nishimura S, Shirota S, Akiba T, Nihei H: Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrol Dial Transplant 2005, 20, 2636–2645.
  26. Yoon HE, Ghee JY, Piao S, Song JH, Han DH, Kim S, Ohashi N, Kobori H, Kuro-o M, Yang CW: Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant 2011, 26, 800–813.
  27. Crestani M, Sadeghpour A, Stroup D, Galli G, Chiang JY: Transcriptional activation of the cholesterol 7α-hydroxylase gene (CYP7A) by nuclear hormone receptors. J Lipid Res 1998, 39, 2192–2200.
  28. Kharitonenkov A, Shiyanova T, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB: FGF-21 as a novel metabolic regulator. J Clin Invest 2005, 115, 1627–1635.
  29. Baum M, Schiavi S, Dwarakanath V, Quigley R: Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules. Kidney Int 2005, 68, 1148–1153.
  30. Tenenhouse H, Martel J, Gauthier C, Seqawa H, Miyamoto K: Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol 2003, 285, F1271–F1278.
  31. Farrow EG, Davis SI, Summers LJ, White KE: Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol 2009, 20, 955–960.
  32. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y: Selected Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 2004, 565, 143–147.
  33. Miyamoto K, Ito M, Kuwahara M, Kato S, Seqawa H: Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Ther Apher Dial 2005, 9, 331–335.
  34. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Seqawa H, Miyamoto K, Fukushima N: Human fibroblast growth factor-23 mutants suppress Na-dependent phosphate co-transport activity and 1αalpha, 25-dihydroxyvitamin D3 production. J Biol Chem 2003, 278, 2206–2211.
  35. Li SA, Watanabe M, Yamada H, Naqai A, Kinuta M, Takei K: Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 2004, 29, 91–99.
  36. Prie D, Urena Torres P, Friedlander G: Latest findings in phosphate homeostasis. Kidney Int 2009, 75, 882–889.
  37. Ito N, Fukumoto S, Takeuchi Y, Takeda S, Suzuki H, Yamashita T, Fujita T: Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J Bone Miner Metab 2007, 25, 419–422.
  38. Burnett-Bowie S, Mendoza N, Leder B: Effects of gonadal steroid withdrawal on serum phosphate and FGF-23 levels in men. Bone 2007, 40, 913–918.
  39. Gupta A, Winer K, Econs J, Marx SJ, Collins MT: FGF-23 is elevated by chronic hyperphosphatemia. J Clin Endocrinol Metab 2004, 89, 4489–4492.
  40. Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson KB, Westin G, Larsson TE: Fibroblast growth factor-23 regulates parathyroid hormone and 1α-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 2007, 195, 125–131.
  41. Kawata T, Imanishi Y, Kobayashi K, Miki T, Arnold A, Inaba M, Nishizawa Y: Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 2007, 18, 2683–2688.
  42. Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N: Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 2008, 23, 939–948.
  43. Sitara D, Kim S, Razzaque MS, Berqwitz C, Taquchi T, Schuler C, Erben RG, Lanske B: Genetic evidence of serum phosphate-independent functions of FGF-23 on bone. PloS Gen 2008, 4, :e10000154.
  44. Kumar R: Phosphate sensing. Curr Opin Nephrol Hypertens 2009, 18, 281–284.
  45. Mulroney S, Woda C, Halaihel E, Louie B, McDonnell K, Schulkin J, Haramati A, Levi M: Central control of renal sodium-phosphate (NaPi-2) transporters. Am J Physiol Renal Physiol 2004, 286, F647–F652.
  46. ADHR Consortium: Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF-23. Nat Gen 2000, 26, 345–348.
  47. Imel E, Hui S, Econs M: FGF-23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res 2007, 22, 520–526.
  48. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE: Loss of DMP-1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Gen 2006, 38, 1310–1315.
  49. The HYP Consortium: A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Gen 1995, 11, 130–136.
  50. Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, Waquespack S, Gupta A, Hannon T, Econs MJ, Blanco P, Gehron Robey P: FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003, 112, 683–692.
  51. White KE, Jonsson K, Carn G, Hampson G, Spector TD, Mannstadt M, Lorenz-Depiereux B, Miyauchi A, Yang M, Ljunggren O, Meitinger T, Strom TM, Juppner H, Econs MJ: The autosomal-dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 2001, 86, 497–500.
  52. Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, Khamaysa Z, Behar D, Petronius D, Friedman V, Zelikovic I, Raimer S, Metzker A, Richard G, Sprecher E: Mutations in GALNT3, encoding a protein involved oin O-linked glycosylation, cause familial tumoral calcinosis. Nat Gen 2004, 36, 579–581.
  53. Larsson T, Davis S, Garringer H, Mooney SD, Draman MS, Cullen MJ, White KE: Fibroblast growth factor-23 mutants causing familial tumoral calcinosis are differentially processed. Endocrinology 2005, 146, 3883–3891.
  54. Ichikawa A, Imel EA, Kreiter MI, Yu X, Mackenzie DS, Sorenson AH, Goetz R, Mohammadi M, White KE, Econs MJ: A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest 2007, 117, 2684–2691.
  55. Marsell R, Grundberg E, Krajisnik T, Mallmin H, Karlsson M, Mellstrom D, Orwoll E, Ohlsson C, Jonsson KB, Ljunggren O, Larsson TE: Fibroblast growth factor-23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men. Eur J Endocrinol 2008, 158, 125–129.
  56. Roos M, Lutz J, Salmhofer H, Luppa P, Knauss A, Braun S, Martinof S, Schomig A, Heemann U, Kastrati A, Hausleiter J: Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin Endocrinol (Oxf) 2008, 68, 660–665.
  57. Antoniucci DM, Yamashita T, Portale AA: Dietary phosphorus regulates serum fibroblast growth fator-23 concentrations in healthy men. J Clin Endocrinol Metab 2006, 91, 3144–3149.
  58. Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS: Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res 2006, 21, 1187–1196.
  59. Ferrari SL, Bonjour JP, Rizzoli R: Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 2005, 90, 1519–1524.
  60. Isakova T, Gutrierrez O, Shah A, Castado L, Holmes J, Lee H, Wolf M: Postprandial mineral metabolism and secondary hyperthyroidism in early CKD. J Am Soc Nephrol 2008, 19, 615–623.
  61. Nishida Y, Taketani Y, Yamanaka-Okumura H, Imamura F, Taniquchi A, Sato T, Shuto E, Nashiki K, Arai H, Yamamoto H, Takeda E: Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int 2006, 70, 2141–2147.
  62. Reiss E, Canterbury J, Bercovitz M, Kaplan EL: The role of phosphate in the secretion of parathyroid hormone in men. J Clin Invest 1970, 49, 2146–2149.
  63. Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosova T, Gejyo F, Fukagawa M: Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis 2004, 44, 250–256.
  64. Gutierrez OM, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Juppner H, Wolf M: Fibroblast growth factor 23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 2005, 16, 2205–2215.
  65. Fliser D, Kollertis B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, Ritz E, Kronenberg F, MMKD Study Group, Kuen E, Konig P, Kraatz G, Muller GA, Kohler H, Riegler P: Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: The Mild to Moderate Kidney Disease (MMKD) Study. Am Soc Nephrol 2007, 18, 2600–2608.
  66. Imanishi Y, Inaba M, Nakatsuka K, Naqasue K, Okuno S, Yoshihara A, Miura M, Miyauchi A, Kobayashi K, Miki T, Shoji T, Ishimura E, Nishizawa Y: FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 2004, 65, 1943–1946.
  67. Nagano N, Miyata S, Abe M, Kobayashi N, Wakita S, Yamashita T, Wada M: Effect of manipulating serum phosphorus with phosphate binder on circulating PTH and FGF-23 in renal failure rats. Kidney Int 2006, 69, 531–537.
  68. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, Andress DL: Prevalence of abnormal serum vitamin D, PTH, calcium and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 2007, 71, 31–38.
  69. Ix JH, Shlipak MG, Wassel CL, Whooley MA: Fibroblast growth factor-23 and early decrements in kidney function: the Heart and Soul Study. Nephrol Dial Transplant 2010, 25, 993–997.
  70. Koh N, Fujimori T, Nischiguchi S, Tamori A, Shiomi S, Nakatani T, Suqimura K, Kishimoto T, Kinoshita S, Kuroki T, Nabeshima Y: Severely reduced production of klotho in human chronic renal failure. Biochem Biophys Res Commun 2001, 280, 1015–1020.
  71. Marsell R, Krajisnik T, Goransson H, Ohlsson C, Ljunggren O, Larsson TE, Jonsson KB: Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23. Nephrol Dial Transplant 2008, 23, 827–833.
  72. Block G, Klassen P, Lazarus M, Ofsthun N, Lowrie EG, Chertow GM: Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004, 15, 2208–2218.
  73. Kalantar-Zadeh K, Kuwae N, Regidor D, Kovesdy CP, Kilpatrick RD, Shinaberger CS, McAllister CJ, Budoff MJ, Salusky IB, Kopple JD: Survival predictability of time-varying indicator of bone disease maintenance hemodialysis patients. Kidney Int 2006, 70, 771–780.
  74. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, Wolf M: Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008, 359, 584–592.
  75. Kendrick J, Cheung A, Kaufman J, Greene T, Roberts W, Smits G, Chonchol M, and the HOST investigators: FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol 2011, 22, 1913–1922.
  76. Titan S, Zatz R, Graciolli F, dos Reis L, Barros R, Jorgetti V, Moyses R: FGF-23 as a predictor of renal outcome in diabetic nephropathy. Clin J Am Nephrol 2011, 6, 241–247.
  77. Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, Sarwar A, Hoffmann U, Coglianese E, Christenson R, Wang TJ, deFilippi C, Wolf M: Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009, 119, 2545–2552.
  78. Hsu H, Wu M: Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hamodialysis patients. Am J Med Sci 2009, 337, 116–122.
  79. Mirza M, Larsson A, Melhus H, eLind L, Larsson TE: Serum intact FGF23 associated with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 2009, 207, 546–551.
  80. Mirza M, Larsson A, Lind L, Larsson TE: Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 2009, 205, 385–390.
  81. Evenpoel P, Naesens M, Claes K, Kuypers D, Vanrenterqhem Y: Tertiary “hyperphosphatoninism” accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant 2007, 7, 1193–1200.
  82. Evenpoel P, Meijers B, de Jonge H, Naesens M, Bammens B, Claes K, Kuypers D, Vanrenterqhem Y: Recovery of hyperphosphatoninism and renal phosphorus wasting one year after successful renal transplantation. Clin J Am Soc Nephrol 2008, 3, 1829–1836.
  83. Kawarazaki H, Shibagaki Y, Fukumoto S, Kido R, Nakajima I, Fuchinoue S, Fujita T, Fukagawa M, Teraoka S: The relative role of fibroblast growth factor 23 and parathyroid hormone in predicting future hypophosphatemia and hypercalcemia after living donor kidney transplantation: a 1-year prospective observational study. Nephrol Dial Transplant 2011, 26, 2691–2695.
  84. Wesseling-Perry K, Tsai E, Ettenger R, Juppner H, Salusky B: Mineral abnormalities and long-term graft function in pediatric renal transplant recipients: a role for FGF-23? Nephrol Dial Transplant 2011, 26, 3779–3784.
  85. Holick M: Vitamin D deficiency. N Engl J Med 2007, 357, 266–281.
  86. Wolf M, Shah A, Gutierrez O, Ankers E, Monroy M, Tamez H, Steele D, Chang Y, Camargo CA Jr, Tonelli M, Thadhani R: Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int 2007, 72, 1004–1013.
  87. Medici D, Razzaque M, Deluca S, Rector TL, Hou B, Kang K, Goetz R, Mohammadi M, Kuro-O M, Olsen BR, Lanske B: FGF-23-Klotho signaling stimulates proliferation and prevents vitamin D-induced apoptosis. J Cell Biol 2008, 182, 459–465.
  88. Razzaque M: Does FGF23 toxicity influence the outcome of chronic kidney disease? Nephrol Dial Transplant 2009, 24, 4–7.
  89. Faul C, Amaral A, Oskouei B, Ming-Chang H, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M: FGF23 induces left ventricular hypertrophy. J Clin Invest 2011, 121, 4398–4408.
  90. Ashikaga E, Honda H, Suzuki H, Hosaka N, Hirai Y, Sanada D, Nakamura M, Nagai H, Matsumoto K, Kato N, Mukai M, Watanabe M, Takahashi K, Shishido K, Akizawa T: Impact of fibroblast growth factor 23 on lipids and atherosclerosis in hemodialysis patients. Ther Apher Dial 2010, 14, 315–322.
  91. Nasrallah MM, El-Shehaby AR, Salem MM, Osman NA, EL Sheikh E, Sharaf E: Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol Dial Transplant 2010, 25, 2679–2685.
  92. Koiwa F, Kazama JJ, Tokumoto A, Onoda N, Kato H, Okada T, Nii-Kono T, Fukagawa M, Shigematsu T: ROD21 Clinical Research Group: Sevelamer hydrochloride and calcium bicarbonate reduce serum fibroblast growth factor 23 levels in dialysis patients. Ther Apher Dial 2005, 9, 336–339.