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Abstract

The fibroblast growth factor (FGF) family comprises a number of polypeptides which share a common homology
core region. FGF-23, produced by osteoblasts and osteocytes, belongs to the FGF-19 subfamily and serves as the
main phosphatonine. Two forms of circulating FGF-23 are detectable in serum: full-length FGF-23 - intact FGF-23
(iFGF-23), which is biologically active, and the inactive C-terminal FGF-23 (cFGF-23). FGF-23 with a corecep-
tor (Klotho protein) inhibits renal phosphate reabsorption and synthesis of calcitriol by reducing 1a-hydroxylase
(CYP27B1) activity, reducing vitamin D-dependent phosphate intestinal absorption. High phosphorus intake,
1,25-dihydroxyvitamin D3 and PTH are the main stimuli for FGF-23 secretion. Impaired FGF-23 metabolism is
involved in phosphate disturbances manifesting as rickets or osteomalacia or increased tissue calcinosis. FGF-23
may be also produced by some tumors leading to hypophosphatemia. Both ¢FGF-23 and iFGF-23 concentrations
start to increase with mild impairment of the glomerular filtration rate in stage 2 or 3 of chronic kidney disease
(CKD) as a consequence of the increased FGF-23 production. It seems that enhanced FGF-23 secretion may consti-
tute a protective mechanism against enhanced phosphate accumulation in the early stages of CKD. However, it may
lead to calcitriol deficiency and escalation of secondary hyperparathyroidism. Increased FGF-23 level is supposed
to be an independent factor increasing mortality of CKD patients. There is ambiguous data if FGF-23 only reflects
disturbances in calcium-phosphate metabolism or if it exerts a detrimental effect itself by diminishing calcitriol
synthesis, inducing cell proliferation or acting through low-affinity, Klotho-independent receptors in the heart and
endothelium. So far, little evidence supports direct FGF-23 toxicity (Adv Clin Exp Med 2012, 21, 3, 391-401).
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Streszczenie

Rodzina czynnika wzrostu fibroblastow (FGF) obejmuje kilkana$cie peptyddéw zawierajacych wspolny, homologicz-
ny region. FGF-23, nalezacy do podrodziny FGF-19, ktdry jest wydzielany przez osteoblasty oraz osteocyty, i petni
role gtéwnej fosfatoniny. W osoczu peptyd ten jest wykrywany w dwodch postaciach: o pelnej dlugosci FGF-23
(intact FGF - iFGF-23), aktywnej biologicznie, oraz C-konicowych fragmentéw FGF-23 (c-FGF-23). FGF-23 przy
udziale koreceptora, biatka Klotho, hamuje reabsorpcje zwrotna fosforanéw w cewkach nerkowych oraz synteze
kalcytriolu przez hamowanie aktywnoéci la-hydroksylazy (CYP27B1), zmniejszajac jelitowe wchlanianie wap-
nia. Duza podaz fosforanéw w diecie, parathormon oraz 1,25-dihydroksywitamina D3 s3 gléwnymi bodZcami
stymulujacymi wydzielanie FGF-23. Nieprawidtowo$ci metabolizmu FGF-23 prowadza do zaburzen gospodarki
fosforanowej objawiajacych sie krzywica lub osteomalacja, oraz wapnieniem tkanek migkkich. FGF-23 moze by¢
takze wydzielany przez komorki nowotworowe, powodujac wystepowanie przewleklej hipofosfatemii. Zwiekszone
wydzielanie FGF-23 prowadzi do wzrostu stezenia zaréwno cFGF-23, jak i iFGF-23 juz przy umiarkowanym upo-
$ledzeniu czynnosci wydalniczej nerek, w fazie 2. i 3. przewleklej choroby nerek (p.ch.n.). Wydaje si¢ prawdo-
podobne, ze jest to mechanizm kompensacyjny, chronigcy organizm przed kumulacjg fosforandow. Zwiekszenie
stezenia FGF-23 przyczynia sie jednak do niedoboru kalcytriolu oraz nasilenia wtérnej nadczynnosci przytarczyc.
Przypuszcza sie, ze zwigkszone stezenie FGF-23 moze by¢ niezaleznym czynnikiem ryzyka zwigkszonej $miertel-
nosci u pacjentéw z p.ch.n., dotychczas opublikowane dane s3 jednak niejednoznaczne. By¢ moze stezenie FGF-23
u tych chorych odzwierciedla jedynie zaburzenia gospodarki wapniowo-fosforanowej i przez stymulacje recepto-
réw o matym powinowactwie w mig$niu sercowym i srédbtonku oraz hamowanie syntezy kalcytriolu nasila pro-
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liferacje komdrek, przez co posrednio przyczynia si¢ do powiklan p.ch.n. Ostatnio pojawily sie pierwsze dowody
wskazujace na bezposrednie toksyczne dziatanie FGF-23 (Adv Clin Exp Med 2012, 21, 3, 391-401).

Stowa kluczowe: FGF-23, przewlekta choroba nerek, biatko Klotho.

The prevalence of chronic kidney disease
(CKD) and end-stage CKD is rising especially in
elderly patients. The diagnosis and treatment of
CKD is usually delayed as the clinically useful mea-
sures of early kidney impairment (stage 2 of CKD)
are missing. Thus a chance to slow CKD progres-
sion to end-stage and lower cardiovascular mortal-
ity is irretrievably restricted.

The gold standard of glomerular filtration
rate (GFR) determination is the measurement of
inulin clearance, as inulin is neither reabsorbed
nor secreted in the renal tubules and only reflects
glomerular filtration. However, the measurement
is cumbersome and impractical, hence, rarely used
in daily clinical practice.

Therefore, the assessment of renal function is
based mainly on serum creatinine concentration,
and its recalculation to estimated GFR at a steady-
state condition. Creatinine, a product of muscular
creatine phosphate degradation, is filtered by the
glomerulus but also secreted by the tubules. Its
concentration depends on muscle mass and meat
ingestion and thus does not precisely reflect GFR.
Its tubular excretion increases with the advance of
CKD leading to overestimation of GFR.

The estimation of GFR is based on equations
comprising serum creatinine level: the Cockcroft and
Gault (C-G), MDRD (Modification of Diet in Renal
Disease) and CKD-EPI (Chronic Kidney Disease Ep-
idemiology Collaboration) formulas, which are bet-
ter renal function parameters than serum creatinine
concentration itself. The C-G and MDRD formulas
estimate GFR and employ not only serum creatinine
concentration but also age, gender and race addition-
ally in the MDRD formula. Unfortunately, even the
recently implemented CKD-EPI formula has not
solved the conundrum with early CKD detection.

Other formulas of GFR estimation are based
on cystatin C serum concentration, a ubiquitous
protein produced by all cells and freely filtered by
the glomeruli, reabsorbed and degradated in the
proximal tubules and without tubular excretion.
Its concentration changes in some pathological
situations and its use as a marker of renal function
has not proved to be better than serum creatinine.

Therefore, there is still a great demand for
a biochemical marker of early renal impairment.
It seems that fibroblast growth factor 23 (FGF-23),
a new hormone involved in calcium-phosphate
homeostasis, reflecting impaired renal function in
the early CKD stages, may become useful in the
identification of patients with mild CKD.

Structure

The fibroblast growth factor (FGF) family
comprises a number of polypeptides which share
a common homology core region which contains
approximately 120 amino acid residues and vari-
able N- and C-terminal flanking residues. The core
homology region constitutes a $3-trefoil structure
composed of folded {3-strands and loops [1, 2]. So
far seven subfamilies of human FGFs have been
identified by phylogenetic analysis. The most re-
cently identified FGF is FGF-23, which belongs to
the FGF-19 subfamily [1, 2], that comprises both
FGF-19 and FGF-21 [3]. FGF-23 serves as the
main phosphatonine, playing an important role,
as a hormone, in phosphate homeostasis [4]. FGF-
23 isa 251 amino acid peptide produced by osteo-
blasts and osteocytes [4-6] with a 24 amino acid
signal peptide and 227 residues (32 kD) forming
the FGF-23 structure (residues 25-180) and C-
terminal sequence (residues 181-251), unique but
conservative in the FGF family [7, 8]. Enzymes re-
sponsible for FGF-23 cleavage - sutilisin-type pre-
protein convertase — recognize 17?Arg and 3%Ser
amino acid sequences (the RXXR motif located at
the boundary between the homology domain and
72-amino acid C-terminal tail) within the FGF ho-
mology region present in the N-terminal part of
the FGF-23 structure [7, 9] and produce a biologi-
cally inactive peptide which comprises an inactive
N-terminal (Y25 to R179) and C-terminal frag-
ment (S180 to 1251) [2].

Full-length FGF-23 - intact FGF-23 (iFGF-23)
is biologically active, whereas C-terminal FGF-23
(cFGF-23) fragments are inactive and does not
exert any influence on phosphate metabolism [7].
In physiological conditions, iFGF-23 is the most
abundant of circulating FGF-23 peptides [10, 11],
with an estimated half-life in circulation of about
58 minutes [12]. FGF-23 degradation is still not
fully known [11]. The measurement of cFGF-23
comprises both iFGF-23 and C-terminal inactive
FGE-23 [11].

As described above, the primary sites of FGF-23
production are bones, mainly osteoblasts and os-
teocytes [5] although its transcript has also been
detected in other tissues: the hypothalamus, ova-
ries, testes, thymus, brain, choroid plexus, parathy-
roid glands and heart [13].

The FGF family peptides are ligands of FGF
receptors (FGFR) [14, 15]. There are distinct genes
encoding four FGF receptors (FGFR1 - FGFR4).
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An FGF receptor consists of an intracellular do-
main with tyrosine kinase activity, a single trans-
membrane domain and an extracellular domain
with up to three immunoglobulin-like structures
(D1 - D3) [16, 17]. Alternative splicing of the sec-
ond half of the D3 domain of FGFR1 - 3 results
in a distinct ligand-binding specificity of epithelial
and mesenchymal (FGFR1b - 3b and FGFR1c -
3c) receptors in different tissues [16]. Low FGE-
23 binding affinity to heparin-sulfate, the con-
sequence of structural divergence, facilitates its
endocrine activity [2]. A disulfide bond, absent
in other FGF subfamilies, stabilizes the unique 83-
trefoil structure of the core region of the FGF-19
subfamily which is different from the fundamental
trefoil structure of other FGF subfamily members.
The conformational changes related to the disul-
fide bond lead to its low affinity to heparin sulfate,
and in consequence, FGF-23 may be distributed in
the bloodstream and maintain their systemic func-
tion [2]. Members of other FGF subfamilies with
a high affinity to heparin sulfate are captured by
the cell membrane containing heparin sulfate, lim-
iting their influence on paracrine actions [8]. FGF-
23 requires the Klotho protein as a co-receptor
which stabilizes FGF-23-FGFR binding by simulta-
neous interaction with FGF-23 and its receptor [2,
18, 19]. Klotho surface protein with homologies
to B-glucosidases forms a tertiary complex inter-
acting with FGF-23 and FGFR [18, 19], as there
is a higher affinity of interaction between FGF-23
and the Klotho-FGF-R complex than FGFR or
Klotho protein alone [19]. Klotho protein seems to
be essential for FGF-23 action as Klotho, primar-
ily described as an aging suppressor [20], is local-
ized in target tissues of FGF-23 action (i.e. kidney,
parathyroid gland, pituitary and choroid plexus
in the brain) [18]. Moreover, transgenic FGF-23
null (FGF-237/7) and Klotho (klotho knock-out —
klotho™/~) mice represent a similar phenotype [18],
regardless of high FGF-23 concentration in Klotho
mice [18]. Recent studies showed that the main re-
ceptor for FGF-23 is FGFRI, while FGFR4 plays
only a minor role [21]. It seems that the Klotho
protein determines FGF-23 receptor selectivity and
its renal action [22]. There are two forms of Klotho
protein, transmembrane and soluble. FGF-23 en-
hances soluble Klotho form secretion. The results
of a recently published study suggest that soluble
Klotho protein acts as a phosphaturic agent that
decreases Na/Pi ITa channel activity independently
from FGF-23 [23]. Moreover, it has been shown
that soluble Klotho protein concentration in urine
decreases with the CKD stage. Therefore its low
urinary concentration may be an early marker of
CKD stage 1 or 2 [24]. In an experimental study, it
was shown that Klotho protein administration in

mice with a model of acute kidney injury preserves
renal function by decreasing apoptosis [25]. It was
also found that renin-angiotensin-aldosterone sys-
tem (RAAS) activity is inversely associated with
Klotho protein expression via the AT1 receptor
activation dependent mechanism [26].

Action

Three proteins of the FGF-19 subfamily, FGF-
19, FGF-21 and FGF-23, exert diverse physiologi-
cal functions. FGF-19 inhibits the expression of
cholesterol-7-a-hydroxylase (CYP7Al), the first
and rate-limiting step in bile acid synthesis [27].
FGF-21 lowers triglyceride concentration and
stimulates insulin independent glucose uptake by
adipocytes [28].

FGF-23 acts as a phosphatonin, inhibiting renal
phosphate reabsorption by reducing the abundance
of sodium-dependent phosphate cotransporters
(Na/Pi ITa and Na/Pi Ilc) in the apical brush border
membrane in kidney proximal tubules [21, 29]. Re-
nal phosphate reabsorption is mainly mediated by
the ITa cotransporter, while approximately one third
is reabsorbed through the Ilc cotransporter [30].
Klotho protein is also expressed in the distal tu-
bule [31] but phosphate reabsorption does not take
place there [32]. The exact intracellular pathway of
FGFR-Klotho complex stimulation leading to inhi-
bition of phosphate reabsorption and vitamin Dj
hydroxylation still remains unknown.

FGF-23 also inhibits the Na/Pi IIb cotrans-
porter localized in the gastrointestinal tract and
reduces vitamin D-dependent phosphate absorp-
tion [33]. FGF-23 decreases calcitriol synthesis [7,
34] by reducing lo-hydroxylase (CYP27B1) activ-
ity — a rate-limiting step in calcitriol synthesis -
and increasing the alternative pathway of vitamin
D metabolism by enhancing 24-hydroxylase ex-
pression (CYP24A1) [7].

The expression of FGF-23 has been detected in
other organs, such as the testes, ovaries and brain
(pituitary and choroid plexus). It is unknown if
Klotho protein is co-expressed in other organs
with FGF-23 expression and what the effects of
FGF-23 stimulation in these organs are [35].

Regulation

The main stimuli for FGF-23 secretion are
as follows: high phosphorus intake, 1,25-dihy-
droxyvitamin D3 and PTH directly or indirectly
by enhancing calcitriol synthesis [4, 36]. It seems
that non-dietary increase of serum phosphate is
a weaker stimulus for FGF-23 secretion [37, 38].
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Both FGF-23 and PTH stimulate phosphatu-
ria in a similar manner but the exact mechanism
of interaction between FGF-23 and PTH is still
unknown. Accumulation of serum phosphate in
patients with hypoparathyroidism and normal
kidney function proves that FGF-23 alone, even
in increased concentration, is unable to maintain
phosphaturia at a sufficient level [39]. However, in
a single study, in animals after parathyreidectomy,
an independent phosphaturic effect of FGF-23 was
demonstrated [7].

Some authors suggest that FGF-23 regulates
phosphorus balance rather than the phosphorus
level itself. However, the increased level of FGF-23
in hypoparathyroid subjects seems to be a com-
pensatory response to hyperphosphataemia [39]
and negates this theory.

FGFRs and Klotho protein are co-expressed
in the parathyroid glands and may regulate PTH
secretion. In vitro, it has been shown that PTH
transcription decreases in parathyroid glands af-
ter FGF-23 injection in a dose-dependent man-
ner [40]. On the other hand, PTH may stimulate
FGF-23 secretion by osteoblasts with primary hy-
perparathyroidism at least in rodents [41], prob-
ably enhancing phosphate wasting.

The data concerning the role of FGF-23 in
bone mineralization is conflicting [42, 43]. More-
over, no precise mechanism of FGF-23 secretion
by osteocyte cells has been detected.

Finally, it should be stressed that other phos-
phaturic mechanisms than PTH and FGF-23 may
participate in the regulation of phosphate metabo-
lism and urinary phosphorus excretion [44, 45].

The Role of FGF-23
in Pathology

FGF-23 is involved in such phosphate metabo-
lism diseases as autosomal recessive and dominant
hypophosphatemic rickets (ARHR and ADHR, re-
spectively). In ADHR, familial hypophosphatemic
rickets/osteomalacia, there is no response to physi-
ological doses of vitamin D. It is caused by a variety
of missense mutations of the FGF-23 gene destroy-
ing the RXXR motif by replacement of 76Arg or
179 Arg with other amino acids followed by cleavage
resistance [46]. However, the enhanced action of
FGF-23 seems not to be a satisfactory explanation
of the pathogenesis of AHR. Comparable level of
FGF-23 in hypophosphatemic and control subjects
suggests the derangement of FGF-23 production in
the disease [47].

In ARHR patients, mutations in dentin matrix
protein 1 (DMP-1) expressed in osteocytes and od-
ontoblasts have been identified [48], accompanied

by a high level of FGF-23. However, it still remains
unclear how DMP-1 derangement enhances the
production of FGF-23.

Similarly, FGF-23 overexpression has already
been shown in X-linked hypophosphatemic rick-
ets/osteomalacia (XLH) [10]. Deletion of a 3 region
of phosphate-regulating gene with homologies to
endopeptidases on the X chromosome (PHEX),
whose expression was detected in osteocytes, os-
teoblasts and odontoblasts, is known as a causal
factor of XLH [49]. The function of PHEX protein
in cells is still not clear and its influence on FGF-23
production has not been clarified.

In patients with rickets/osteomalacia associ-
ated with McCune-Albright syndrome and fibrous
dysplasia, characterized by replacement of the
medullar cavity with fibrous, chondral and osseous
tissues, increased circulatory levels of FGF-23 were
observed [50]. Mutations of the guanine nucleotide
binding protein, alpha stimulating 1 gene (GNAS1)
have been demonstrated, but the pathway of en-
hancing FGF-23 production is unknown too.

FGF-23 is abundantly expressed in cells of
phosphaturic mesenchymal tumors, mixed con-
nective tissue variant (PMTMCT) which leads to
an increased concentration of plasma FGF-23 [51].
The removal of tumors resulted in normalization
of FGF-23 and phosphate levels.

Mutations of GALNT3, Klotho and FGF-23
have been implicated in the etiology of hyper-
phosphatemic syndromes with ectopic calcifica-
tions [52, 53, 54]. FGF-23 and GALNT3 genes
mutations between 7?Arg and !8Ser amino acid
residues resulting in enhanced FGF-23 cleavage
and a decreased level of the intact, active form of
FGF-23 [52, 53]. GALNT3 missense mutations af-
fect FGF-23 glycosylation, making it less resistant
to degradation [52, 53]. Finally, Klotho mutations
result in decreased production of Klotho protein
and lower sensitivity to stimulation of target tis-
sues by FGF-23 [54].

FGF-23 and Physiological
Kidney Function

Although the main physiological role of FGF-
23 is to maintain a stable phosphate serum level,
no correlation between FGF-23 and serum phos-
phate concentration in subjects with normal kid-
ney function has been observed [55, 56].

The results of the studies evaluating the im-
pact of oral phosphate load have usually demon-
strated increased renal phosphate excretion [11,
57-61] with stable [11, 57-59] or only slight in-
creases [60] of serum phosphate concentration and
elevated FGF-23 level. In line with these findings,
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Table 1. Inherited and acquired fibroblast growth factor 23 (FGF-23) related hypophosphatemic diseases

Tabela 1. Wrodzone i nabyte choroby przebiegajace z hipofosfatemia zalezne od zaburzen czynnika wzrostu fibroblastow 23

(FGF-23)
Disease Gene mutation Clinical manifestation Reference
(Choroba) (Mutacja genu) (Manifestacja kliniczna) (Pi$miennictwo)
Autosomal dominant hypophos- missense mutations of hypophosphatemic rick- | [47]
phatemic rickets (ADHR) FGF-23 ets/osteomalacia, resis-
tance to vitamin D
Autosomal recessive hypophos- dentin matrix protein hypophosphatemic rick- | [48]
phatemic rickets (ARHR) 1 (DMP-1) ets/osteomalacia, resis-
tance to vitamin D

X-linked hypophosphatemic rick- phosphate-regulating hypophosphatemic rick- | [49]
ets/osteomalacia gene with homologies to | ets/osteomalacia, resis-

endopeptidases on the tance to vitamin D

X chromosome (PHEX)
McCune-Albright syndrome guanine nucleotide hypophosphatemic rick- | [50]

binding protein, alpha ets/osteomalacia; fibrous

stimulating 1 (GNAS 1), | dysplasia

somatic mosaicism
Phosphaturic mesenchymal acquired disease — hypophosphatemic rick- | [51]
tumors, mixed connective tissue enhanced expression of ets/osteomalacia
variant (PMTMCT) FGF-23

Table 2. Inherited fibroblast growth factor 23 (FGF-23) related hyperphosphatemic diseases

Tabela 2. Wrodzone choroby przebiegajace z hiperfosfatemig zalezne od zaburzen czynnika wzrostu fibroblastow 23 (FGF-23)

Gene mutation (Mutacja genu) Clinical manifestation Reference
(Manifestacja kliniczna) (Pi$miennictwo)

GALNTS3 and FGF-23 gene mutations hyperphosphatemic calcinosis [52, 53]

GALNTS3 gene mutation hyperphosphatemic calcinosis [52]

Klotho gene hyperphosphatemic calcinosis, FGF-23 resistance [54]

GALNTS3 - gene encoding polypeptide N-acetylgalactosaminyltransferase 3.
GALNTS3 - gen kodujacy poplipeptyd transferazy N-acetylogalaktozaminy 3.

phosphate restriction was followed by a FGF-23
concentration decrease [57-59]. Some discrepant
results might be the consequences of a different
time of phosphate loading - from three [11, 57, 60,
61] to several days [58, 59], a non-adequate run-in
period in most studies [11, 59-61] that emphasized
the effect of previous eating habits.

Both PTH and FGF-23 are responsible for in-
creased phosphate excretion after oral phosphate
load. PTH enhances phosphaturia just a few hours
after oral intake, while the increase of FGF-23 takes
place after longer oral phosphate loading [61, 62].

FGF-23 in the Pathogenesis
of Chronic Kidney Disease

FGF-23 concentrations start to increase with
mild impairment of the glomerular filtration rate
in stage 2 or 3 of chronic kidney disease (CKD),

before the increase of serum phosphate is detect-
able [11, 63-65], and gradually rise along with the
advance of CKD, [62] reaching levels 1000 times
higher than in healthy subjects [11]. In the more
advance stages of CKD, the FGF-23 increase is par-
allel to those of phosphate, Cax P and PTH [11, 22,
29, 32, 63, 65, 66].

There are strong correlations between concen-
trations of intact and c-terminal FGF-23. The in-
creased concentrations of FGF mostly reflect phos-
phate accumulation in CKD patients [65].

Increased concentrations of FGF-23 precede
a decrease in circulating distal tubule and calcitriol
and an increase in phosphate which suggest a sig-
nificant role of FGF-23 in phosphorus homeosta-
sis in CKD before secondary hyperparathyroidism
develops [64, 67]. Overproduction of both FGF-23
and PTH allow the maintenance of the physiologi-
cal level of phosphorus even in advanced CKD
stages [68].
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FGF-23 concentrations increase independently
with mild decrements in GFR and microalbumin-
uria in patients with cardiovascular disease [69].
It suggests that FGF-23 is one of the earliest de-
tectable biochemical markers of glomerular filtra-
tion rate impairment [69]. cFGF-23 concentration
increases clearly with GFR levels, approximately
<90 ml/min/1.73m? independently from age, gen-
der, race, blood pressure, presence of diabetes and
body mass index [69].

It is still not clear why the level of FGF-23
increases in the early stages of CKD. It has been
hypothesized that it results from the decreased re-
nal FGF-23 clearance [11], however no increase in
FGF-23 metabolites has been detected [66], sug-
gesting an increase in FGF-23 production [66].

In another study [70], reduced Klotho protein
expression in the kidneys was observed, which may
result in organ resistance to FGF-23 action. Addi-
tionally, it seems that FGF-23 downregulates the
expression of Klotho protein which accounts for
a rising resistance to FGF-23 and its compensatory
increase, as well as stimulating PTH secretion and
inhibiting 1,25-(OH),D; synthesis in CKD [71].
All these hypotheses assume that the increase in
FGF-23 in CKD is a compensatory mechanism
of phosphate retention along with nephron loss,
resulting in increased single nephron phosphate
urinary excretion and diminished calcitriol-depen-
dent intestinal phosphate absorption.

Another hypothesis comprises enhanced FGF-
23 production in bones by a kidney-driven, un-
known stimuli in the course of CKD.

Even if FGF-23 enhanced secretion is a pro-
tective mechanism against hyperphosphatemia,
it may lead to calcitriol deficiency and escalation
of secondary hyperparathyroidism. It should be
stressed that both calcitriol deficiency and hyper-
phosphatemia are independent risk factors of car-
diovascular mortality in dialysis CKD patients [72,
73]. It has also been shown that the FGF-23 level
is independently associated with increased mor-
tality in CKD patients [74]. Nearly 6 times higher
mortality has been observed in the quartile of pa-
tients with the highest FGF-23 concentration when
compared to the lowest quartile [74]. Moreover, it
has been proved that FGF-23 concentration was
a better predictor of mortality than hyperphos-
phataemia in hemodialysis [74] and in predialy-
sis patients [75]. Higher FGF-23 concentration
maintains a predictive value even in subjects with
a serum phosphate level lower than 5.5 mg/dl, sug-
gesting that a high FGF-23 level itself may consti-
tute an indication of intensification of phosphorus
binder therapy despite phosphataemia within the
recommended range.

In another observational study, FGF-23 was

associated with increased risk of death and pre-
dicted the development of end-stage renal fail-
ure among patient with eGFR between 30 and
44 ml/min/1.73m? in a population of patients with
CKD stages 2-4 [19].

It should be noted that FGF-23 concentration
seems to be a better predictor of CKD progression
(time to doubling of serum creatinine) than calcit-
riol, calcium or phosphate levels are [65]. This is
also true in patients with diabetic nephropathy and
macroalbuminuria [76]. Moreover, an association
between FGF-23 levels and left ventricular hyper-
trophy in predialysis CKD patients [77], on dialy-
sis [78] and without renal dysfunction has been
revealed [79]. Finally, higher FGF-23 levels were
associated with vascular reactivity impairment due
to endothelial dysfunction in subjects with normal
kidney function and with arterial stiffness in sub-
jects with CKD [80]. This data is raising a hypoth-
esis of FGF-23 toxicity.

Increased concentration of FGF-23 was ob-
served in patients after kidney transplantation
even with normal graft function [81]. FGF-23 lev-
els are higher in kidney transplant recipients than
in GFR-matched controls [82] three months after
transplantation and they tend to decline within
one year after transplantation [82]. It seems that
an inappropriately high FGF-23 level is partially
responsible for a lower serum phosphate level
during the early period after transplantation [81]
due to suppression of calcitriol synthesis and
stimulation of parathyroid overactivity [74-81].
It is hypothesized that higher FGF-23 concentra-
tions are caused by autonomous FGF-23 secre-
tion, resistant to inhibitory stimuli, by osteoblasts,
related to its excessive production prior to trans-
plantations [81]. It has been shown that the FGF-
23 level before transplantation predicts its con-
centration 3 months posttransplant [82] and the
occurrence of hypophosphatemia in a 12-month
follow-up [83]. It has been shown that, a year af-
ter kidney transplantation, FGF-23 level is related
to glomerular filtration rate [82], and predicts the
risk of kidney graft deterioration in the follow-
up [84].

The FGF-23 and Vitamin D
Paradox

Treating predialysis and hemodialysis CKD
patients with vitamin D, although beneficial (lon-
ger survival) [73], may increase FGF-23 concentra-
tion, as calcitriol is a well-known stimulus of FGE-
23 secretion. As high FGF-23 levels are associated
with higher mortality in CKD patients, some doubt
may arise if this is the correct treatment.
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It seems that vitamin D is a weaker stimulus
for FGF-23 secretion in patients with advanced
CKD than in healthy controls. The authors still do
not know if vitamin D analogs, characterized by
a lower hypercalcaemic and hyperphosphataemic
effect, stimulate FGF-23 secretion.

Finally, despite the fact that hyperphos-
phatemia is associated with increased mortality
in CKD patients, vitamin D therapy proved to be
beneficial regardless of the increase in serum phos-
phate levels [73, 74]. Perhaps the beneficial effects
of vitamin D therapy overcome the postulated det-
rimental effects of FGF-23 [85].

Is FGF-23 Only a Bystander?

It still remains to be established if serum FGF-
23 concentration reflects only disturbances in
calcium-phosphate metabolism or if it may exert
detrimental effects itself, in patients with CKD. As
FGF-23 concentration reflects phosphorus accu-
mulation in CKD patients [11, 64, 65] and hyper-
phosphataemia increases significantly the cardio-
vascular risk [72, 73], the predictive value of high
FGF-23 levels may be indirect. It should be noted
that FGF-23 diminishes synthesis of calcitriol and
that it may increase mortality [86] and explain the
harmful effect of FGF-23 in CKD patients.

However, phosphate accumulation and calcit-
riol deficiency seems not to fully explain the det-
rimental effect of high FGF-23 levels in CKD pa-
tients. Even after adjustment for the disturbances
of calcium-phosphate metabolism [65] and vitamin
D [74, 80], high FGF-23 levels were still associated
with worse outcome in CKD patients.

Perhaps the potential direct FGF-23 toxicity in
CKD patients may be related to deregulation of the
cell circle. In experimental studies, both FGF-23 and
Klotho protein induce cell proliferation [87], while
vitamin D exerts a proapoptotic effect. Moreover,
extremely high concentrations of FGF-23 may act
through low-affinity, Klotho-independent FGFR in
organs other than kidneys, such as the heart and en-
dothelium [88]. However, no unusual cardiovascular
complication has been reported in patients with syn-
dromes with primary high FGF-23 concentrations.
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