Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2023, vol. 32, nr 9, September, p. 937–942

doi: 10.17219/acem/171565

Publication type: editorial

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Chen C, Nakagawa S. Recent advances in the study of the neurobiological mechanisms behind the effects of physical activity on mood, resilience and emotional disorders. Adv Clin Exp Med. 2023;32(9):937–942. doi:10.17219/acem/171565

Recent advances in the study of the neurobiological mechanisms behind the effects of physical activity on mood, resilience and emotional disorders

Chong Chen1,A,D,E,F, Shin Nakagawa1,A,E,F

1 Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan

Graphical abstract


Graphical abstracts

Abstract

Physical activity (PA) significantly influences emotional wellbeing, from enhancing mood to counteracting emotional disorders such as depression and anxiety. This article offers an in-depth analysis of the neurobiological processes and theories underpinning the emotional benefits of PA which arise from exercise-induced physiological changes that simultaneously benefit brain function. We discuss the role of growth factors, neurotransmitters and biochemicals, as well as enhancements in mitochondrial biogenesis and antioxidant activity, and how they foster exercise performance and emotional health. Central to our discussion are theories related to depression: the “neurotrophic,” “neurogenesis,” “inflammation,” “oxidative stress,” and “monoamine” hypotheses. We also introduce the emergent “glutamate hypothesis” and discuss exercise-induced lactate release as a potential precursor for glutamate. Additionally, we explore the “endorphin” and “endocannabinoid” hypotheses, underscoring their implications in evoking feelings of euphoria, pain relief and diminished anxiety after exercise. In conclusion, PA exerts a diverse influence on brain health and emotional wellbeing. The dynamic interplay between PA and neurobiological processes signals a promising avenue for future research, with the potential to introduce innovative therapeutic strategies for emotional disorders.

Key words: neurotrophic hypothesis, neurogenesis hypothesis, glutamate hypothesis, monoamine hypothesis, endocannabinoid hypothesis

Introduction

Numerous studies have demonstrated the positive influence of physical activity (PA) on emotional wellbeing,1, 2, 3, 4 including enhancing mood, vigor5, 6, 7 and resilience,8, 9 and its therapeutic effects on depression10, 11, 12 and anxiety.13, 14 Despite the fact that neurobiological mechanisms underlying these benefits remain a dynamic area of research,9, 15, 16, 17, 18, 19 comprehensive reviews offering a synthesis of existing knowledge are notably absent. Here, we extend our recent work on the cognitive impact of PA20 to provide an exhaustive overview of the neurobiological mechanisms of the affective benefits of PA.

From exercise physiology to brain health

We have demonstrated that bodily adaptations that enhance exercise performance also benefit brain function.20 Specifically, PA triggers the release of biochemicals, including growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), vascular endothelial-derived growth factor (VEGF), lactate, interleukin 6 (IL-6), and neurotransmitters such as dopamine and serotonin (5-HT). Additionally, PA facilitates mitochondrial biogenesis and bolsters antioxidant enzyme activity. These adaptations facilitate lipid and carbohydrate metabolism, and enhance tissue and blood vessel growth and repair, leading to optimized energy production. Both dopamine and 5-HT play vital roles in motor control, and together with growth factors, mitochondrial biogenesis and antioxidant enzyme activity, help mitigate central fatigue. Collectively, these adaptations bolster endurance and exercise performance.

Interestingly, physiological adaptations also confer brain benefits (Figure 1). Growth factors cross the blood–brain barrier (BBB) and function as nutrients for neurons and blood vessels, facilitating enhanced angiogenesis and adult hippocampal neurogenesis, and increasing cerebral blood volume, dendritic spines, brain volume, and long-term potentiation (LTP). Lactate crosses the BBB and acts as an energy source for neurons and a precursor for the predominant excitatory neurotransmitter, glutamate, thereby augmenting LTP. Interleukin 6 activates IL-1 receptor antagonist and IL-10, which initiate anti-inflammatory actions, including reduced production of IL-1β, IL-8 and tumor necrosis factor alpha (TNF-α). Enhanced mitochondrial biogenesis and antioxidant enzyme activity decrease reactive oxygen species (ROS) production and oxidative stress. While chronic inflammation and oxidative stress impair the BBB, causing neuroinflammation, microglia activation and neuronal damage, PA protects against these effects (see Chen and Nakagawa20 for details).

The multifaceted role of physical activity in boosting resilience and alleviating depression

Remarkably, physiological adaptations to PA play a significant role in promoting emotional wellbeing. The so-called “neurotrophic hypothesis”21, 22 and “neurogenesis hypothesis”23, 24 have established the crucial role of growth factors and adult hippocampal neurogenesis in resilience and depression. Essentially, both neurogenesis and growth factors diminish under chronic stress and depression, yet are restored or rejuvenated by antidepressants and PA. Moreover, growth factors are essential for adult neurogenesis, which mediates pattern separation, thus contributing to cognitive flexibility and resilience.25, 26 Growth factors also enhance the growth of dendritic spines, the primary locations for synaptic inputs to neurons. As such, PA increases dendritic spine density in the hippocampus and the prefrontal cortex (PFC).27, 28 In tandem, the “inflammation hypothesis”29, 30, 31 and the “oxidative stress hypothesis”32, 33 have garnered considerable interest. Chronic stress triggers inflammation and oxidative stress that contribute to depressive and anxiety disorders. Antidepressant treatment and PA, however, reduce these effects. A potential mediator of PA-enhanced mitochondrial biogenesis is the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α),34 which further regulates the kynurenine pathway, another mechanism through which PA reduces depression.35, 36, 37

Regarding neurotransmission, the “monoamine hypothesis,” which proposes that antidepressants act on serotonin, noradrenaline and dopamine, has been a dominant theory for over half a century.38 It posits that depression involves the depletion of these monoamines, and that agents increasing them alleviate depression. However, it does not explain the latency in depressive symptom relief,39 prompting the emergence of the “glutamate hypothesis.”40 The alterations in glutamate and its metabolites identified in various brain regions of depressed patients, along with the rapid antidepressant effects of ketamine (a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist), provide compelling evidence for this hypothesis. Notably, ketamine induces transient activation of glutamate neurotransmission in the PFC via gamma-aminobutyric acid (GABA) interneuron disinhibition, followed by a sustained increase in PFC synaptic connectivity.41, 42

Physical activity not only boosts the release of dopamine and serotonin in the brain, but also increases the levels of lactate crossing the BBB, which serves as a glutamate precursor.20, 43 As per our previous work, voluntary wheel running increased prefrontal dopamine in rats,15 which aligns with the functional role of prefrontal dopamine in working memory, with PA linked to heightened cognitive flexibility6, 44, 45 and resilience.15, 46 Physical activity also raises dopamine levels in the midbrain and striatum,47, 48 which encode reward prediction errors and fuel action vigor.49, 50, 51 Using similar and relevant mechanisms,52, 53, 54 PA helps reduce anxiety, a condition commonly co-occurring with depression.55, 56, 57, 58

Physical activity, endorphins, endocannabinoids, and positive emotions

Alongside the aforementioned mechanisms, the body also releases endorphins (a term derived from “endogenous” and “morphine”) and endocannabinoids (an endogenous cannabinoid) during PA. Endorphins facilitate lipid and carbohydrate metabolism, while endocannabinoids promote vasodilation and bronchodilation, enhancing oxygen supply to muscles. These biochemicals augment exercise performance and deliver affective benefits, as captured in the “endorphin hypothesis”59, 60 and the “endocannabinoid hypothesis.”61

The “endorphin hypothesis” was the initial theory to elucidate the phenomenon of “runner’s high” or feelings of euphoria, pleasantness and analgesia after PA. Research has illustrated a strong correlation between changes in β-endorphin plasma concentrations after PA and shifts in feelings of pleasantness (Rho = 0.738, p < 0.001).62 This hypothesis, however, has faced criticism since β-endorphin cannot cross the BBB to activate the μ-opioid receptors responsible for euphoria.63 Despite this, subsequent research implies that PA may directly augment opioid binding in prefrontal/orbitofrontal cortices and the anterior cingulate cortex, thereby eliciting euphoria.64

The “endocannabinoid hypothesis” is an alternative theory that has garnered increasing attention, as peripheral endocannabinoids cross the BBB, activate cannabinoid receptors, and evoke feelings of euphoria and reduced anxiety.65 The PA-induced changes in anandamide, a particular endocannabinoid, correlate with shifts in positive emotions (r = 0.96, p < 0.0001).66 Moreover, genetic ablation of cannabinoid receptors on GABAergic neurons eliminates PA-induced anxiolysis, while pharmacological inhibition of central and peripheral cannabinoid receptors blocks analgesia in mice.67

Conclusions

The complex interactions between PA and the neurobiological mechanisms of affective benefits offer a rich, multifaceted field of study. Our comprehensive overview provides a robust framework for further research, one that may hold the key to developing novel therapeutic approaches for the treatment of emotional disorders and the promotion of emotional wellbeing.

Figures


Fig. 1. A schematic illustration of exercise physiology and the neurobiological mechanisms through which physical activity augments emotional well-being. During physical activity, the body’s physiological adaptations that are primarily aimed at improving exercise performance (represented by dashed black arrows) serve a dual purpose, as they also confer significant benefits to the brain, consequently enhancing emotional wellbeing (depicted with solid colored lines with each pathway distinguished by a unique color). Adapted from Chen and Nakagawa20
ATP – adenosine triphosphate; BBB – brain–blood barrier; BDNF – brain-derived neurotrophic factor; IGF-1 – insulin-like growth factor-1; IL-6 – interleukin 6; LTP – long-term potentiation; ROS – reactive oxygen species; 5-HT – serotonin; TNF-α – tumor necrosis factor alpha; VEGF – vascular endothelial-derived growth factor.

References (67)

  1. Chen C. Fitness Powered Brains: Optimize Your Productivity, Leadership And Performance. London, UK: Brain & Life Publishing; 2017. ISBN:978-1-9997601-7-5.
  2. Chen C. Plato’s Insight: How Physical Exercise Boosts Mental Excellence. London, UK: Brain & Life Publishing; 2017. ISBN:978-1-9997601-2-0.
  3. Chen C, Sonata Yau SY, Clemente FM, Ishihara T. The Effects of Physical Activity and Exercise on Cognitive and Affective Wellbeing. Lausanne, Switzerland: Frontier Media SA; 2022. doi:10.3389/978-2-8325-0814-5
  4. Pawik M, Kowalska J, Rymaszewska J. The effectiveness of whole-body cryotherapy and physical exercises on the psychological well-being of patients with multiple sclerosis: A comparative analysis. Adv Clin Exp Med. 2019;28(11):1477–1483. doi:10.17219/acem/104529
  5. Reed J, Ones DS. The effect of acute aerobic exercise on positive activated affect: A meta-analysis. Psychol Sport Exerc. 2006;7(5):477–514. doi:10.1016/j.psychsport.2005.11.003
  6. Aga K, Inamura M, Chen C, et al. The effect of acute aerobic exercise on divergent and convergent thinking and its influence by mood. Brain Sci. 2021;11(5):546. doi:10.3390/brainsci11050546
  7. Wender CLA, Manninen M, O’Connor PJ. The effect of chronic exercise on energy and fatigue states: A systematic review and meta-analysis of randomized trials. Front Psychol. 2022;13:907637. doi:10.3389/fpsyg.2022.907637
  8. Arida RM, Teixeira-Machado L. The contribution of physical exercise to brain resilience. Front Behav Neurosci. 2021;14:626769. doi:10.3389/fnbeh.2020.626769
  9. Belcher BR, Zink J, Azad A, Campbell CE, Chakravartti SP, Herting MM. The roles of physical activity, exercise, and fitness in promoting resilience during adolescence: Effects on mental well-being and brain development. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(2):225–237. doi:10.1016/j.bpsc.2020.08.005
  10. Morres ID, Hatzigeorgiadis A, Stathi A, et al. Aerobic exercise for adult patients with major depressive disorder in mental health services: A systematic review and meta-analysis. Depress Anxiety. 2019;36(1):39–53. doi:10.1002/da.22842
  11. Sakai Y, Chen C, Toyomaki A, et al. A brief, individualized exercise program at intensities below the ventilatory threshold exerts therapeutic effects for depression: A pilot study. Front Behav Neurosci. 2021;15:787688. doi:10.3389/fnbeh.2021.787688
  12. Heissel A, Heinen D, Brokmeier LL, et al. Exercise as medicine for depressive symptoms? A systematic review and meta-analysis with meta-regression. Br J Sports Med. 2023;57(16):1049–1057. doi:10.1136/bjsports-2022-106282
  13. McDowell CP, Dishman RK, Gordon BR, Herring MP. Physical activity and anxiety: A systematic review and meta-analysis of prospective cohort studies. Am J Prevent Med. 2019;57(4):545–556. doi:10.1016/j.amepre.2019.05.012
  14. Carter T, Pascoe M, Bastounis A, Morres ID, Callaghan P, Parker AG. The effect of physical activity on anxiety in children and young people: A systematic review and meta-analysis. J Affect Disord. 2021;285:10–21. doi:10.1016/j.jad.2021.02.026
  15. Chen C, Nakagawa S, Kitaichi Y, et al. The role of medial prefrontal corticosterone and dopamine in the antidepressant-like effect of exercise. Psychoneuroendocrinology. 2016;69:1–9. doi:10.1016/j.psyneuen.2016.03.008
  16. Chen C, Nakagawa S, An Y, Ito K, Kitaichi Y, Kusumi I. The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front Neuroendocrinol. 2017;44:83–102. doi:10.1016/j.yfrne.2016.12.001
  17. Kandola A, Ashdown-Franks G, Hendrikse J, Sabiston CM, Stubbs B. Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neurosci Biobehav Rev. 2019;107:525–539. doi:10.1016/j.neubiorev.2019.09.040
  18. Heinze K, Cumming J, Dosanjh A, et al. Neurobiological evidence of longer-term physical activity interventions on mental health outcomes and cognition in young people: A systematic review of randomised controlled trials. Neurosci Biobehav Rev. 2021;120:431–441. doi:10.1016/j.neubiorev.2020.10.014
  19. Sun W, Lu EY, Wang C, Tsang HWH. Neurobiological mechanisms for the antidepressant effects of mind-body and physical exercises: A systematic review. Ment Health Phys Act. 2023;25:100538. doi:10.1016/j.mhpa.2023.100538
  20. Chen C, Nakagawa S. Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res Rev. 2023;86:101868. doi:10.1016/j.arr.2023.101868
  21. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology. 2008;33(1):88–109. doi:10.1038/sj.npp.1301574
  22. Yang T, Nie Z, Shu H, et al. The role of BDNF on neural plasticity in depression. Front Cell Neurosci. 2020;14:82. doi:10.3389/fncel.2020.00082
  23. Kempermann G, Kronenberg G. Depressed new neurons? Adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry. 2003;54(5):499–503. doi:10.1016/S0006-3223(03)00319-6
  24. Petrik D, Lagace DC, Eisch AJ. The neurogenesis hypothesis of affective and anxiety disorders: Are we mistaking the scaffolding for the building? Neuropharmacology. 2012;62(1):21–34. doi:10.1016/j.neuropharm.2011.09.003
  25. Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility: Linking memory and mood. Nat Rev Neurosci. 2017;18(6):335–346. doi:10.1038/nrn.2017.45
  26. Surget A, Belzung C. Adult hippocampal neurogenesis shapes adaptation and improves stress response: A mechanistic and integrative perspective. Mol Psychiatry. 2022;27(1):403–421. doi:10.1038/s41380-021-01136-8
  27. Glasper ER, Llorens-Martin MV, Leuner B, Gould E, Trejo JL. Blockade of insulin-like growth factor-I has complex effects on structural plasticity in the hippocampus. Hippocampus. 2009;20(6):706–712. doi:10.1002/hipo.20672
  28. Brockett AT, LaMarca EA, Gould E. Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS One. 2015;10(5):e0124859. doi:10.1371/journal.pone.0124859
  29. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–741. doi:10.1016/j.biopsych.2008.11.029
  30. Kiecolt-Glaser JK, Derry HM, Fagundes CP. Inflammation: Depression fans the flames and feasts on the heat. Am J Psychiatry. 2015;172(11):1075–1091. doi:10.1176/appi.ajp.2015.15020152
  31. Carrera-González MDP, Cantón-Habas V, Rich-Ruiz M. Aging, depression and dementia: The inflammatory process. Adv Clin Exp Med. 2022;31(5):469–473. doi:10.17219/acem/149897
  32. Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int J Neuropsychopharmacol. 2008;11(6):851–876. doi:10.1017/S1461145707008401
  33. Moylan S, Berk M, Dean OM, et al. Oxidative & nitrosative stress in depression: Why so much stress? Neurosci Biobehav Rev. 2014;45:46–62. doi:10.1016/j.neubiorev.2014.05.007
  34. Ren J, Xiao H. Exercise for mental well-being: Exploring neurobiological advances and intervention effects in depression. Life. 2023;13(7):1505. doi:10.3390/life13071505
  35. Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial impairment: A common motif in neuropsychiatric presentation? The link to the tryptophan-kynurenine metabolic system. Cells. 2022;11(16):2607. doi:10.3390/cells11162607
  36. Battaglia MR, Di Fazio C, Battaglia S. Activated tryptophan-kynurenine metabolic system in the human brain is associated with learned fear. Front Mol Neurosci. 2023;16:1217090. doi:10.3389/fnmol.2023.1217090
  37. Marx W, McGuinness AJ, Rocks T, et al. The kynurenine pathway in major depressive disorder, bipolar disorder, and schizophrenia: A meta-analysis of 101 studies. Mol Psychiatry. 2021;26(8):4158–4178. doi:10.1038/s41380-020-00951-9
  38. Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry. 2000;61(Suppl 6):4–6. PMID:10775017.
  39. Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci. 2018;72(1):3–12. doi:10.1111/pcn.12604
  40. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression. Neuropharmacology. 2012;62(1):63–77. doi:10.1016/j.neuropharm.2011.07.036
  41. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238–249. doi:10.1038/nm.4050
  42. Abdallah CG, Sanacora G, Duman RS, Krystal JH. The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacol Ther. 2018;190:148–158. doi:10.1016/j.pharmthera.2018.05.010
  43. Hertz L, Gibbs ME, Dienel GA. Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline. Front Neurosci. 2014;8:261. doi:10.3389/fnins.2014.00261
  44. Chen C, Mochizuki Y, Hagiwara K, Hirotsu M, Nakagawa S. Regular vigorous-intensity physical activity and walking are associated with divergent but not convergent thinking in Japanese young adults. Brain Sci. 2021;11(8):1046. doi:10.3390/brainsci11081046
  45. Matsumoto K, Chen C, Hagiwara K, et al. The effect of brief stair-climbing on divergent and convergent thinking. Front Behav Neurosci. 2022;15:834097. doi:10.3389/fnbeh.2021.834097
  46. Nakagawa T, Koan I, Chen C, et al. Regular moderate-to-vigorous-intensity physical activity rather than walking is associated with enhanced cognitive functions and mental health in young adults. Int J Environ Res Public Health. 2020;17(2):614. doi:10.3390/ijerph17020614
  47. Meeusen R, De Meirleir K. Exercise and brain neurotransmission. Sports Med. 1995;20(3):160–188. doi:10.2165/00007256-199520030-00004
  48. Foley TE, Fleshner M. Neuroplasticity of dopamine circuits after exercise: Implications for central fatigue. Neuromol Med. 2008;10(2):67–80. doi:10.1007/s12017-008-8032-3
  49. Beierholm U, Guitart-Masip M, Economides M, et al. Dopamine modulates reward-related vigor. Neuropsychopharmacology. 2013;38(8):1495–1503. doi:10.1038/npp.2013.48
  50. Chen C, Omiya Y, Yang S. Dissociating contributions of ventral and dorsal striatum to reward learning. J Neurophysiol. 2015;114(3):1364–1366. doi:10.1152/jn.00873.2014
  51. Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: A review of computational research. Neurosci Biobehav Rev. 2015;55:247–267. doi:10.1016/j.neubiorev.2015.05.005
  52. Anderson E, Shivakumar G. Effects of exercise and physical activity on anxiety. Front Psychiatry. 2013;4:27. doi:10.3389/fpsyt.2013.00027
  53. An Y, Chen C, Inoue T, et al. Mirtazapine exerts an anxiolytic-like effect through activation of the median raphe nucleus-dorsal hippocampal 5-HT pathway in contextual fear conditioning in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:17–23. doi:10.1016/j.pnpbp.2016.04.014
  54. Okubo R, Chen C, Sekiguchi M, Hamazaki K, Matsuoka YJ. Mechanisms underlying the effects of n-3 polyunsaturated fatty acids on fear memory processing and their hypothetical effects on fear of cancer recurrence in cancer survivors. Prostaglandins Leukot Essent Fatty Acids. 2018;131:14–23. doi:10.1016/j.plefa.2018.03.006
  55. Chen C. Recent advances in the study of the comorbidity of depressive and anxiety disorders. Adv Clin Exp Med. 2022;31(4):355–358. doi:10.17219/acem/147441
  56. Tanaka M, Chen C. Editorial: Towards a mechanistic understanding of depression, anxiety, and their comorbidity. Perspectives from cognitive neuroscience. Front Behav Neurosci. 2023;17:1268156. doi:10.3389/fnbeh.2023.1268156
  57. Tanaka M, Szabó Á, Vécsei L. Preclinical modeling in depression and anxiety: Current challenges and future research directions. Adv Clin Exp Med. 2023;32(5):505–509. doi:10.17219/acem/165944
  58. Battaglia S, Nazzi C, Thayer JF. Fear-induced bradycardia in mental disorders: Foundations, current advances, future perspectives. Neurosci Biobehav Rev. 2023;149:105163. doi:10.1016/j.neubiorev.2023.105163
  59. Morgan WP. Affective beneficence of vigorous physical activity. Med Sci Sports Exerc. 1985;17(1):94–100. PMID:3157040.
  60. Goldfarb AH, Jamurtas AZ. Beta-endorphin response to exercise: An update. Sports Med. 1997;24(1):8–16. doi:10.2165/00007256-199724010-00002
  61. Dietrich A. Endocannabinoids and exercise. Br J Sports Med. 2004;38(5):536–541. doi:10.1136/bjsm.2004.011718
  62. Wildmann J, Krüger A, Schmole M, Niemann J, Matthaei H. Increase of circulating beta-endorphin-like immunoreactivity correlates with the change in feeling of pleasantness after running. Life Sci. 1986;38(11):997–1003. doi:10.1016/0024-3205(86)90233-X
  63. Bodnar RJ. Endogenous opiates and behavior: 2006. Peptides. 2007;28(12):2435–2513. doi:10.1016/j.peptides.2007.09.002
  64. Boecker H, Sprenger T, Spilker ME, et al. The runner’s high: Opioidergic mechanisms in the human brain. Cereb Cortex. 2008;18(11):2523–2531. doi:10.1093/cercor/bhn013
  65. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4(11):873–884. doi:10.1038/nrn1247
  66. Raichlen DA, Foster AD, Gerdeman GL, Seillier A, Giuffrida A. Wired to run: Exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the ‘runner’s high.’ J Exp Biol. 2012;215(8):1331–1336. doi:10.1242/jeb.063677
  67. Fuss J, Steinle J, Bindila L, et al. A runner’s high depends on cannabinoid receptors in mice. Proc Natl Acad Sci U S A. 2015;112(42):13105–13108. doi:10.1073/pnas.1514996112