Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2023, vol. 32, nr 9, September, p. 1049–1061

doi: 10.17219/acem/159531

Publication type: review

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Chodór-Rozwadowska KE, Sawicka M, Morawski S, Lenarczyk R, Kalarus Z, Kukulski T. Lead-related tricuspid regurgitation and ventricle dysfunction: Current management and future perspectives. Adv Clin Exp Med. 2023;32(9):1049–1061. doi:10.17219/acem/159531

Lead-related tricuspid regurgitation and ventricle dysfunction: Current management and future perspectives

Karolina Ewa Chodór-Rozwadowska1,2,A,B,D,F, Magdalena Sawicka3,C,D,E,F, Stanisław Morawski4,E,F, Radosław Lenarczyk1,2,E,F, Zbigniew Kalarus1,2,E,F, Tomasz Kukulski1,2,A,D,E,F

1 Doctoral School, Division of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland

2 Department of Cardiology, Silesian Centre for Heart Diseases, Zabrze, Poland

3 Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Silesian Centre for Heart Diseases, Zabrze, Poland

4 Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Medical University of Silesia, Katowice, Poland

Graphical abstract


Graphical abstracts

Abstract

The implantation of cardiac implantable electronic devices (CIEDs) may result in or worsen previously existing tricuspid regurgitation (TR). The prevelence of lead-related tricuspid regurgitation (LRTR) in patients with CIEDs is between 7.2% and 44.7% when the degree of worsening TR is not reported, or from 9.8% and 38% when it is diagnosed as worsening of TR severity by at least 2 grades after a CIED has been implanted. It has been suggested that a CIED lead positioned over or pinning a leaflet may be the main cause of TR in this patient population. The septal and posterior leaflets of the tricuspid valve have been reported to be the most affected by CIED leads. Severe LRTR is related to the development of heart failure (HF) or worsening of previously existing dysfunction; it is also associated with elevated mortality. However, there are no definitive predictors of LRTR development or standardized methods of treatment. Some studies have suggested that imaging-guided lead placement can reduce the occurrence of LRTR. This review summarizes current knowledge concerning the development, evaluation, consequences, and management of LRTR.

Key words: cardiac implantable electronic devices, lead-related tricuspid regurgitation, heart failure

Introduction

The etiology of tricuspid regurgitation (TR) is predominantly functional (93% of cases) and includes left- and right-sided heart failure (HF), dysfunction of the aortic and mitral valves, pulmonary hypertension (PH), and arrhythmias. The incidence of isolated TR induced by atrial fibrillation is estimated to be approx. 8% of cases.1 The prevalence of significant TR among patients with a cardiac implantable electronic device (CIED) has not been precisely determined and varies from 7.2% to 44.7%2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or from 9.8% to 38%4, 12, 18, 21, 23, 24 when it is diagnosed as worsening of TR severity by at least 2 grades after a CIED has been implanted. A summary of current studies on TR occurrence after the implantation of CIED is presented in Table 1. Lead-related tricuspid regurgitation (LRTR) is associated with the development of HF and increased mortality,5, 6, 21, 25 yet different authors have different views about its clinical relevance. The differences between reports concerning TR and CIEDs include the number of patients, the type of investigated CIED, the method of TR assessment, and definitions of its significance.9

Imaging techniques for the assessment of lead position

Two-dimensional echocardiography

Conventional 2D transthoracic echocardiography (TTE) has limitations in its anatomical assessment of the tricuspid valve (TV) because only 2 leaflets can be visualized simultaneously on the atypical parasternal view. Furthermore, the posterior leaflet can only be seen on the right ventricular two-chamber view. Therefore, identifying a relationship between the leaflets and a CIED lead can be a challenging task.3 The evaluation of LRTR severity is based on standard criteria of the right ventricle (RV) and TV assessment. It includes RV dimensions, fractional area change, tricuspid annular plane systolic excursion (TAPSE), right ventricular systolic pressure, proximal isovelocity surface area (PISA), vena contracta, effective regurgitant orifice, and regurgitation volume.10, 12, 13, 24, 26, 27 To avoid an underestimation of LRTR, it is crucial to record regurgitant flow during inspiration. Massive TR in a patient with a CIED and calculated strain of the RV are shown in Figure 1.

Three-dimensional echocardiography

Some limitations of conventional TTE can be overcome using 3D echocardiography.28, 29 It enables clinicians to make a complete assessment of the anatomy of the TV and subvalvular apparatus, as well as the geometry, volume and ejection fraction of the RV. The optimal view to enable visualization of all the TV leaflets and commissures is the en face view with the septal leaflet located at the 6 o’clock position.28 In patients with CIEDs, 3D echocardiography makes it possible to identify the lead position and localize a leaflet prolapse, perforation or vegetations, in addition to the origin of the regurgitation jet. The 3D technique may be helpful in the evaluation of the TV orifice area for grading tricuspid stenosis.28, 30 It substantially improves the determination of the mechanism of valve dysfunction and is feasible in 74–94.2% of patients with CIEDs.3, 16, 31

Transesophageal echocardiography

Transesophageal echocardiography (TEE) should be considered a complementary technique of imaging in nonconclusive assessment of lead position. Moreover, TEE seems to be a more accurate method for evaluating TR severity. Lin et al. performed preoperative TTE in patients with LRTR undergoing cardiac surgery, and TR severity was underestimated in 37% of patients in subsequent intraoperative TEE.32 In Figure 2, TV imaging methods and lead position in TEE are presented. Figure 3 explains how to assess TR and lead position.

Chest radiography

Chest radiography is used to determine the dislocation of the leads and their position in relation to each other, as well as to check their continuity. Pang et al. in their study divided the RV region with 3 horizontal lines to assess the lead position in the posteroanterior (PA) view using fluoroscopy. Those regions are referred to as right ventricular outflow tract (RVOT) (superior region), middle RV and inferior region, with the last one divided into RV inflow and RV apex.33 Yu et al. assessed the position of the leads on chest radiography in the PA view and found that nonapical RV lead position was not as often associated with TV interference as apical RV lead position.34

Techniques for implantation of CIEDs

The implantation of CIEDs is performed under fluoroscopic guidance. The tip of the lead is directed toward the interventricular septum (IVS) or RV apex. The 3 most commonly used techniques are35:

1. “Prolapsing” – the lead is put into the right atrium (RA) with an inner stylet 5–10 cm from the lead tip and pushed to create a limp loop hanging on the tricuspid annulus. Next, the lead is slightly retracted, and the stylet is slipped forward for prolapsing the lead to the RV. The tip of the lead may hook on the TV or trabeculation, with the remaining part of the lead hanging within the RV. In such situation, the stylet is pushed forward to free the lead tip, or the stylet and lead are slightly withdrawn together while still maintaining the loop shape of both of them in order to enable prolapsing of the lead to the RV in the next step. This operation should be performed very cautiously because overly vigorous movements can result in entanglement of the lead within the chordae tendineae or injury of the TV and subvalvular apparatus;

2. “Direct crossing” – used especially for leads with a larger diameter. The inner stylet is reshaped to gain less curvature, and the lead is advanced directly from the RA into the RV. As the adjustment of the tip location (by moving and rotating the lead body or ejecting and retracting the inner stylet) is performed after crossing the TV, it may lead to damage of the TV and subvalvular apparatus;

3. “Dropping down” – this technique is also used for thicker leads. The lead is inserted into the RV with the inner stylet maintained in the large curvature, which results in reaching the RV outflow tract by the lead tip directly after crossing the TV. If the tip is too high within the RVOT or the desired position is the IVS, the lead has to be withdrawn. If the final location of the lead tip is the RV apex, the stylet is replaced with a straight one and slipped forward through the lead with simultaneous withdrawal of the lead, which makes the tip “drop down” to the apex.

Mechanisms of lead-related tricuspid valve dysfunction and regurgitation

Many studies have indicated that CIEDs directly affect the function and structure of the TV.3, 6, 8, 16, 20, 22, 30, 31, 32, 36 The mechanisms of LRTR include the following:

1. Leaflet perforation6, 29, 32;

2. Damage of the subvalvular apparatus; chordae tendineae entanglement or rupture and papillary muscle perforation32, 36, 37;

3. Leaflet impingement by a lead or limitation of the movement of a leaflet caused by adherence to the lead3, 9, 20, 29, 31, 32, 36;

4. Fibrosis involving the lead and the TV32;

5. Device-related infections.

The technique of CIED implantation has an impact on the occurrence of LRTR. According to Trankle et al. and Chang et al., “prolapsing” reduces the risk of perforation and laceration of the TV leaflets and subvalvular apparatus. Rajappan, in turn, indicated that “direct crossing” results in a lower risk of damage to the TV apparatus and the development of TR.30, 35, 38 The position of the lead tip is very important. Septal pacing is regarded as more physiological and less associated with the progression of HF.35 Alizadeh et al. found an association between apical pacing and tricuspid and mitral valve regurgitation.19 On the other hand, in a study by Cheng et al., a significant increase in proximal isovelocity surface area (PISA) radius was shown in patients with the lead tip in the IVS compared to those with the lead tip in the RV apex or the outflow tract.31 Placement of the lead within the IVS more often affects the chordae tendineae and causes adherence of the lead to the septal or posterior leaflet, reducing their mobility and inducing TR. In some studies, placing the lead within the RVOT was the position least often related to TR worsening.39, 40

Positioning the lead in the “center of the valve”3, 16, 31, 41 or in the anterior, especially posteroseptal commissure, results in only minimal restriction of the leaflet motion.3, 16, 20, 31, 42 In that context, a promising method of visualization of the TV and optimization of the implantation of a cardiac device’s leads is 3D TTE.6, 16 Gmeiner et al. carried out lead implantation guided with TEE, which resulted in no worsening of TR compared to the control group (p < 0.001); this makes TEE an alternative for procedures performed only with fluoroscopy.43

Polewczyk et al. indicated that loops formed due to an excess of atrial or ventricular leads falling into the TV orifice may cause irritation of the leaflets and their malcoaptation.36 Many authors have suggested that it is not merely the presence of the lead between the leaflets or within the TV commissures but irritation or pinning of the leaflets by the lead that is the main cause of TV dysfunction.3, 8, 16, 20, 31 The septal and posterior leaflets are reported to be the most often affected.3, 8, 9, 16, 20, 31, 32, 37 Henry et al. presented interesting cases of explanted hearts obtained from patients with CIEDs who had undergone cardiac transplantation. In their study, 40% of the cases showed device/lead interference with the TV. Three cases showed interference with the leaflets (the septal leaflet in 2 cases and the anterior leaflet in 1 case), while another 3 cases – interference with the subtricuspid apparatus.37

According to some authors, the type of CIED has an impact on the development of LRTR. In comparison to pacemakers, there is a greater risk of LRTR with implantable cardioverters/defibrillators (ICDs) and cardiac resynchronization therapy defibrillators (CRT-Ds)10, 14 due to the larger diameter of the defibrillation leads. Other authors did not find significant differences in TR occurrence between patients with pacemakers and those with other types of CIEDs.4, 5, 13, 16, 21, 22, 23

Many authors have investigated the relationship between TR development and the mode22 or percentage of cardiac pacing.5, 11, 23, 24, 38 In a study by Fanari et al., RV pacing dependence had no effect on the worsening of TR severity (39% for a high frequency of RV pacing compared to 45% for a low frequency of RV pacing; p = 0.52). This was similar for the mode of stimulation (43.2% in single-chamber ventricular pacing compared to 45.6% in dual-chamber stimulation; p = 0.5).22

Predictors of TV regurgitation development in patients with CIEDs

Apart from the technical aspects described above, other factors can affect the function of the TV after CIED implantation. The dilatation of the RV plays a significant role in the development of TV regurgitation after CIED implantation,3, 6, 9, 12, 23, 30 as does impairment of the systolic or diastolic function of the left ventricle (LV).30, 38, 44 Other risk factors mentioned in reports include increased RA area,20, 23 elevated right atrial pressure8, 9 and elevated pulmonary systolic pressure.6, 23, 45 Lee et al. found that an elevated tricuspid pressure gradient before implantation is an independent predictor of progressive LRTR.11 Even more risk factors for the development of TR have been reported, including age over 73 years (73 years or older according to Lee et al., 76 years according to Delling et al., and 80 years or older according to Riesenhuber et al.6, 12, 23), female sex,12 atrial fibrillation,12, 23 elevated heart rate,6 history of mitral valve dysfunction,6, 12, 23 and left atrial area enlargement.12, 23

On the other hand, a study by Höke et al. found no significant differences in clinical, echocardiographic or device-related factors (age, sex, atrial fibrillation, history of mitral valve dysfunction, left atrial volume, type of device, or percentage of pacing) between patients with TR compared to those with no significant TR after CIED implantation.21

Consequences of TR

Many studies have shown that at least moderate TR is connected with increased mortality and more frequent and prolonged hospitalizations due to HF.4, 5, 6, 9, 11, 13, 21, 26, 46, 47 The same observations apply to LRTR, as patients with tricuspid dysfunction develop RV failure more often than patients without TR.4, 6, 9, 10, 21, 44 A summary of studies concerning the consequences of LRTR is presented in Table 2.

Management of LRTR

In recent years, some new treatment strategies for severe TR and LRTR have emerged. According to the current European Society of Cardiology (ESC) guidelines for the management of valvular heart disease,48 surgery for secondary TR should be performed simultaneously with a left-sided valvular operation if the regurgitation is severe or considered when there is dilatation of the TV annulus in mild or moderate TR. Repair or replacement of the TV, independent of a left-sided operation, should also be considered in cases of severe TR that is causing symptoms or when there is dilatation of the RV in the absence of LV or RV failure and PH; this would promote reverse remodeling of the RV and improve its functional state.49 Among asymptomatic patients, an intervention should be considered when RV dilatation or declining function is observed.48 Severe RV/LV dysfunction or severe PH are considered contraindications for surgery. When a CIED lead is present, the technique should be adapted to the patient’s condition and the surgeon’s experience.50 In Table 3, we summarize the statements and recommendations from various guidelines on TR caused by CIEDs. In selecting the most appropriate and safe treatment strategy for patients with LRTR, the procedures described in the following sections should be considered.

Surgical annuloplasty or valve replacement

According to the 2021 ESC Guidelines for the management of valvular heart disease, when there is no severe TV degeneration or annulus dilatation, the repair of the valve is preferred over the replacement. Wong et al. demonstrated that repair in such cases is associated with better short- and long-term outcomes in both isolated and concomitant TV surgery compared with valve replacement,51 because long-term anticoagulation is not needed and it allows for avoiding thrombosis and degeneration of the bioprosthetic valve.52 In the case of LRTR requiring only an annuloplasty with an open ring (without additional procedures within the leaflets), the lead may be left in the previous position. However, to avoid further complications associated with the interference between the lead and parts of the repaired valve, the lead should be placed between the artificial and native ring or removed and implanted into the coronary sinus, epicardially50 or in another alternative position.53 There are also the options of implantation of a leadless pacemaker or subcutaneous ICD (sICD). In some cases, classic implantation of a new lead within the valve is acceptable. The same rules apply to biological prostheses. When a mechanical prosthesis must be implanted, the lead cannot be placed within the valve. The implantation of a leadless pacemaker is technically impossible secondary to valve surgery, but is acceptable during the procedure.54

Transcatheter tricuspid valve intervention

Transcatheter tricuspid valve intervention (TTVI) is an alternative treatment for patients with secondary severe symptomatic TR and contraindications for surgical intervention. It is not a standard procedure, as it still remains under evaluation and is only conducted in highly specialized centers.48

Leaflet approximation

Lurz et al. conducted transcatheter tricuspid valve repairs using the TriClip device and demonstrated that this device was safe and effective in patients with moderate or severe TR. They achieved a significant reversal of RV remodeling in terms of size and function. However, their study did not provide information about patients with CIEDs.55

Direct annuloplasty

Nickenig et al. presented results on the Cardioband system in patients with symptomatic and moderate to severe functional TR. This system was previously successfully applied in functional mitral regurgitation. The researchers reported a significant reduction in TR through a decrease in annular dimension, as well as a decrease in HF symptoms and improvement in quality of life. In their study, the presence of a CIED was one of the exclusion criteria.56

Valve replacement

Fam et al. reported that the use of the EVOQUE transcatheter tricuspid valve replacement (TTVR) system brought about significant clinical improvement among patients with severe TR and right-sided HF, with high effectiveness (92% of cases) and safety. In their study, 36% of patients had transvenous pacemakers, and TTVR was successful in all cases.57

Taramasso et al. compared medical treatment with TTVI and demonstrated that all-cause mortality and rehospitalizations at 1 year were lower among patients who received the intervention.58 In the TriValve registry for the years 2015–2018, TTVI was conducted in 121 patients with CIEDs. Only 7 patients had isolated device-induced TR, in which the only mechanism for TR was interference between the lead and the TV components. The interventions in that registry included the following: edge-to-edge technique (MitraClip Abbott Vascular, Santa Clara, USA – 106 patients; 87%); PASCAL (Edwards Lifesciences, Irvine, USA – 1 patient; 0.8%), implantation of a coaptation device (FORMA; Edwards Lifesciences – 2 patients; 1.6%), annuloplasty (Cardioband; Edwards Lifesciences – 1 patient; 0.8%), transcatheter valve implantation (CAVI; Edwards Lifesciences – 10 patients; 8%); and NaviGate (NaviGate Cardiac Structures, Lake Forest, USA – 1 patient; 0.8%). Procedural success was achieved in 78.6% of patients, with an in-hospital mortality rate of 3.7%. Symptomatic improvement was observed at 30 days in 65.0% of patients, and survival at 12 months was 73.6 ±5.0%.59

Transvenous lead extraction

A study by Polewczyk et al. showed an improvement in TV function after transvenous lead extraction (TLE) in 35.29% of patients. In that group, the survival rate after 5 years of follow-up was higher compared to patients without improvement after the procedure. One of the most common mechanisms of LRTR in their study was propping the leaflet upward or clamping it down using the lead (85.71%).60 According to Glikson et al., TLE entails a high risk of TV avulsion with worsening TR.50 Nazmul et al. reported some cases of TLE in patients with moderate or severe TR and stated that extraction did not result in a significant reduction in TR, particularly in patients with a dilated TV annulus.61

After TLE, the lead (including the defibrillation one) may be implanted in an alternative site within the RV or into the coronary sinus for LV pacing. Stimulation of the His bundle seems to be the most physiological technique and the least related to secondary TR evoked by pacing.62 In some cases, epicardial leads are used.53 Other solutions may involve a subcutaneous ICD or a leadless pacemaker; however, in the latter case, TR secondary to RV dysfunction associated with nonphysiological distribution of electric pulses or procedural complications can also occur.63, 64, 65 A leadless pacemaker may also be used in combination with an sICD, or a lead can be implanted into the coronary sinus for biventricular pacing.66 Some reports have shown good results with pericardial, extrapleural and substernal placement of defibrillator coils, separately or in conjunction with epicardial pacing leads, although their implantation requires employing surgical techniques.53

Medical therapy

According to the 2021 European Society of Cardiology/European Association for Cardio-Thoracic Surgery (ESC/EACTS) Guidelines for the management of valvular heart disease, conservative therapy of TR should be reserved only for patients with severe RV failure or PH. The treatment is based on diuretics and aldosterone antagonists as well as pharmacotherapy of arterial PH. In patients with atrial fibrillation, maintenance of sinus rhythm may be helpful in the prevention of dilatation of the TV annulus and progression of TR.48

The treatment strategy for severe TR is still not standardized, and more research is needed to establish such a strategy. Guidelines suggest that only severe RV/LV dysfunction or severe PH are considered contraindications for surgery.48 Stocker et al. demonstrated that severe PH, defined as mean pulmonary arterial pressure (mPAP) >30 mm Hg and transpulmonary gradient >17 mm Hg, were associated with higher mortality after TTVR.67 Taramasso et al. reported that systolic pulmonary artery pressure is the strongest parameter related to death and that patients must be treated with optimal medical therapy before the intervention, which allows for the best RV/pulmonary artery coupling in the peri-interventional period with the lowest possible RV afterload.59 In addition, Kavsur et al. demonstrated in their study that pulmonary capillary wedge pressure (PCWP) is a predictive outcome parameter in TTVR patients. They reported that patients with a PCWP ≤ 16 mm Hg had a favorable outcome with lower mortality and morbidity. Furthermore, they suggested that right heart catheterization should be considered a routine diagnostic tool in the process of TTVR evaluation.68 Regarding operative risk, Färber et al. suggested that the Model for End-Stage Liver Disease (MELD) score might be a tool to identify high-risk individuals among patients qualified for isolated TV surgery. In their study, classic surgical risk stratification scores of the Society of Thoracic Surgeons or the European System for Cardiac Operative Risk Evaluation (EuroSCORE II) failed to predict perioperative mortality in patients with severe liver dysfunction.69 A proposal for the management of LRTR is presented in Figure 4.

Discussion

Tricuspid regurgitation has stood on the sidelines of medical interest for many years. In comparison to atrial and mitral valvular diseases, fewer reports about indications and treatment results have been published. In the case of LRTR, the quantity of information is even more limited.

Some authors have stated that there is a lack of evidence regarding the progression of TR after CIED implantation.17, 70, 71 The development of TR in patients with HF and ICDs or CRT-Ds is also questionable. Valve dysfunction may be either a result of mechanical impairment caused by a CIED4, 21 or an effect of the progression of LV and RV failure. Some studies have shown a reduction in TR severity through an improvement in hemodynamic function and an increase in cardiac output after normalization of heart rhythm following CIED implantation.12, 70

It also remains unclear whether the progression of RV remodeling is a cause or a consequence of significant TR. Höke et al. did not identify any significant differences in RV function (TAPSE and RV fractional- area change) in patients with severe LRTR compared to patients without severe LRTR, but larger RV diastolic area (17 ±6 mm2 compared to 16 ±5 mm2; p = 0.009), right atrial enlargement (39 ±10 mm compared to 36 ±8 mm; p < 0.001) and higher pulmonary arterial pressure (41 ±15 mm Hg compared to 33 ±10 mm Hg; p < 0.001) were found in patients with significant LRTR after 1–1.5 years of follow-up. However, longer follow-up periods might lead to a decrease in RV function.21 In addition, no significant differences were observed regarding changes in LV volume or systolic and diastolic function in patients with severe LRTR compare to patients without significant LRTR. Furthermore, the difference in the severity of mitral regurgitation was also similar in patients with compared to without significant LRTR.21

Seo et al. stated that LRTR might induce HF resistant to pharmacotherapy, as a result of continuous progression of TR with TV and RV remodeling.9 Nakajima et al. demonstrated lower effectiveness of HF pharmacotherapy in patients with LRTR in comparison with TR not related to CIEDs, which suggests a real impact of CIED on TR development.8 Papageorgiou et al. observed that new post-implant moderate or severe TR (hazard ratio (HR): 3.14 (95% confidence interval (95% CI): 1.29–7.63); p = 0.01) and RV impairment (HR: 2.82 (95% CI: 1.33–5.98); p = 0.01) were independent predictors of mortality.10

Confirmation of direct contact between the lead and tricuspid valvular apparatus may be challenging. The authors of this article propose that the term “LRTR” should be used in a situation when there is clear evidence of an interaction between the lead and a valve leaflet. The evidence of such an interaction are, among others:

1. Leaflet perforation6, 32;

2. Entanglement of the lead within the chordae tendineae32, 36;

3. Leaflet impingement by a lead or leaflet movement limitation caused by adherence to a lead3, 9, 20, 31, 32, 36;

4. Fibrosis involving the lead and TV apparatus.32

There are many questions related to the treatment of LRTR. Lead extraction is a risky procedure, especially if it is performed many years after primary implantation. In our opinion, the decision for TLE should be considered if the interaction between the electrode and the leaflet is confirmed using 3D TTE, because the presence of an electrode in the center of the tricuspid orifice without any evidence of contact with the leaflet suggests that a change in the position of the electrode after TLE will not affect the valve’s function. The use of a leadless pacemaker or LV pacing with a lead inserted into the coronary sinus also does not prevent TR from developing.72 The occurrence of LRTR should be avoided using available methods, such as His bundle pacing for the most physiological way of stimulation, or the use of TEE43 to implant the ventricular lead intercommissurally or in the middle-of-the-annulus position16 to minimize the interaction of the lead with TV components.

Although different authors differ in their opinions concerning the relevance of LRTR, it seems to be an important clinical problem, with an impact on right and left ventricular function and prognosis. Taking into account the low interest in TV diseases, further studies are required to formulate guidelines concerning LRTR prevention and to choose the time and method of treatment aimed at reducing the risk of complications and achieving optimal results.

Conclusions

Lead-related tricuspid regurgitation is common in patients with CIEDs. Risk factors for its development and impact on RV and LV function are difficult to predict and require further systematic clinical registries and observational studies. The preferred treatment methods for patients with LRTR have not yet been determined.

Tables


Table 1. Summary of the recent reports

Author

Year

n

CIED

Assessment of TR severity

2D or 3D TTE

Frequency (%)

p-value

Paniagua et al.2

1998

374

PPM

onset of severe TR defined as III–IV

2D

7.2

<0.001

Seo et al.3

2008

87

PPM, ICD, CRT

onset of severe TR

2D and 3D

15.0

Kim et al.14

2008

248

PPM, ICD

worsening by at least 1 grade

2D

24.2

Webster et al.17

2008

123

PPM

worsening by at least 1 grade

2D

22.0

Klutstein et al.18

2009

410

PPM

worsening by at least 2 grades

2D

18.3

<0.001

Alizadeh et al.19

2011

125

PPM

moderate-to-severe TR

2D

31.6

<0.001

Addetia et al.20

2014

100

ICD, PPM, CRT

worsening by at least 1 grade

2D and 3D

36.0

Höke et al.21

2014

239

ICD, PPM

worsening to a grade ≥2

2D

38.0

Mediratta et al.16

2014

121

PPM, ICD, CRT

severe TR

2D and 3D

21.5

Fanari et al.22

2015

206

PPM, ICD

worsening by at least 1 grade

2D

44.7

<0.001

Lee et al.23

2015

382

PPM, ICD

worsening by at least 2 grades

2D

10.0

Arabi et al.4

2015

41

PPM, ICD, CRT

worsening by at least 2 grades

2D

17.1

Al-Bawardy et al.5

2015

1596

PPM, ICD

prevalence of grade 3 or 4+ TR

2D

35.0

Delling et al.6

2016

634

PPM

onset of STR defined as moderate-to-severe or ≥3+

2D

16.0

<0.001

Rydlewska et al.7

2017

100

ICD/CRT-D, PM, CRT-P

onset of severe TR

2D

28.0

Nakajima et al.8

2020

143

PPM, ICD, CRT

worsening of lead-related and lead non-related TR

2D and 3D

20.3

Seo et al.9

2020

373

PPM, ICD

worsening of lead-induced and non-lead-induced TR

2D

13.1

Seo et al.24

2020

429

PM

worsening by at least 2 grades

2D

9.8

Papageorgiou et al.10

2020

304

ICD/CRT-D, PM, CRT-P

onset of ≥moderate TR

2D

21.7

Lee et al.11

2021

1075

PPM

increased TR grade ≥2 degrees and TRPG >30 mm Hg

2D

18.4

Riesenhuber et al.12

2021

990

PPM

worsening by at least 2 grades

2D

25.6

Kanawati et al.13

2021

165

PPM, ICD

worsening by at least 1 grade

2D

27.0

CIED – cardiac implantable electronic device; CRT – cardiac resynchronization therapy; CRT-D – cardiac resynchronization therapy defibrillator; CRT-P – cardiac resynchronization therapy pacemaker; ICD – implantable cardiac defibrillator; PPM – permanent pacemaker; STR – severe tricuspid regurgitation; TTE – transthoracic echocardiography; TR – tricuspid regurgitation; TRPG – tricuspid regurgitation pressure gradient.
Table 2. All-cause mortality and hospitalizations for HF due to LRTR

Author

Year

n

Period of observation [years]

Endpoints

p-value

Höke et al.21

2014

239

1–1.5

all-cause mortality

0.047

HF

0.019

Al-Bawardy et al.5

2015

1596

6

all-cause mortality

<0.05

Arabi et al.4

2015

41

1

RV HF

<0.001

Delling et al.6

2016

634

1

all-cause mortality

0.027

Seo et al.9

2020

373

1

hospitalization for HF

0.003

Papageorgiou et al.10

2020

304

11.6

all-cause mortality

0.01

Lee et al.11

2021

1075

4.9

hospitalization for HF

<0.001 in univariable analysis

all-cause mortality

0.503

Kanawati et al.13

2021

165

2.5

hospitalization for HF

0.03

all-cause mortality

0.09

Riesenhuber et al.12

2021

562

10

all-cause mortality

0.028

HF – heart failure; LRTR – lead-related tricuspid regurgitation; RV – right ventricle.
Table 3. Statements and recommendations of guidelines on the occurrence of TR caused by CIEDs

Guidelines

Statements

Recommendations

2021 ESC/EACTS Guidelines for the management of valvular heart disease48

“Cardiac implantable electronic device-lead implantation leads to progressive tricuspid regurgitation in 20–30% of the patients and predicts its progression over time.”

“The Heart Team with expertise in the treatment of tricuspid valve disease evaluates anatomical eligibility for transcatheter therapy including jet location, coaptation gap, leaflet tethering, potential interference with pacing lead.”

“Annuloplasty with prosthetic rings is preferable to valve replacement which should only be considered when the tricuspid valve leaflets are tethered and the annulus severely dilated.”

“In presence of a cardiac implantable electronic device lead, the technique used should be adapted to the patient’s condition and the surgeon’s experience.”

2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy50

“CIED leads may interfere with tricuspid valve function intraoperatively by causing damage to the tricuspid valve leaflets or the subvalvular apparatus, or chronically after operation or lead extraction.”

“Moderate to severe tricuspid regurgitation is generally associated with excess mortality and occurs at a significantly higher rate in CIED patients.”

“Most studies attribute a greater harm with ICD leads and in the presence of multiple RV leads.”

“Methods for percutaneous tricuspid repair have recently gained major attention, but evidence in favour of such interventions in the context of lead-related tricuspid regurgitation is still limited.”

“Indications for surgical valve repair or replacement in the context of CIED-induced tricuspid regurgitation follow current recommendations based on the presence of symptoms, severity of tricuspid regurgitation, and RV function.”

ASE Guidelines and Standards. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation (2017)73

“Pacemaker leads can result in significant TR by interfering with closure of the TV but rarely cause a flail leaflet or a perforation of the leaflet.”

none

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease74

“In patients with severe symptomatic primary TR from either device leads or endomyocardial biopsy, TR develops rapidly, and surgery can be done before the onset of RV dysfunction.”

“Risk factors for persistence or progression of TR include tricuspid annulus dilatation, degree of RV dysfunction or remodelling, leaflet tethering height, pulmonary artery hypertension, AF, and intra annular RV pacemaker or implantable cardioverter-defibrillator leads.”

“There is renewed interest in earlier surgery for patients with severe isolated TR before the onset of severe RV dysfunction or end-organ damage.”

“There is growing interest in the development of catheter-based therapies for these patients with severe isolated TR.”

“In patients with symptomatic severe primary TR, reduction or elimination of the regurgitant volume load by tricuspid valve surgery can alleviate systemic venous and hepatic congestion and decrease reliance on diuretics.”

“Patients with severe congestive hepatopathy may also benefit from surgery to prevent irreversible cirrhosis of the liver.”

“Tricuspid valve repair is preferable to replacement, but replacement may be necessary if there is marked dilatation of the annulus or intrinsic disease of the tricuspid leaflets.”

Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging (2013)75

“TEE is of interest for the diagnosis of endocarditis, venous catheters and pacemakers lead infection, and visualization of traumatic rupture of the tricuspid valve.”

none

AF – atrial fibrillation; CIED – cardiac implantable electronic device; ICD – implantable cardioverter defibrillator; RV – right ventricle; TEE – transesophageal echocardiography; TR – tricuspid regurgitation; TV – tricuspid valve; ESC – European Society of Cardiology; EACTS – European Association for Cardio-Thoracic Surgery; ASE – American Society of Echocardiography; ACC – American College of Cardiology; AHA – American Heart Association.

Figures


Fig. 1. A. Massive tricuspid regurgitation in a patient with an implantable cardioverter/defibrillator; B. Strain of a free wall of the right ventricle (−24%), indicating good systolic function despite dilatation of the right ventricle
Fig. 2. A. 3D imaging of the tricuspid valve, en face view from the right ventricle. A. Diastole; the lead is in the center of the orifice, with no connection to the leaflets; B. Systole; the anterior leaflet is propped by the lead (white arrow); 3D imaging using the Flexi-slice option; C. Anatomy of the tricuspid valve; D–F. 2D scans in 2 perpendicular planes (D,E), confirming direct contact of the lead with the anterior leaflet
Fig. 3. Patient with dual-chamber pacemaker after annuloplasty of the tricuspid valve and severe tricuspid regurgitation. A. Increased value of proximal isovelocity surface area (solid line arrow). The prosthetic ring is marked with a dotted line arrow; B,C. 3D imaging, with the lead located in the middle of the valve orifice; D. En face view from the right ventricle chamber at the lead and the valve orifice; E,F. Long axis view at the lead and tricuspid valve leaflets; the ring is marked with a dotted line arrow; G. Short axis view from the right ventricle at the lead
Fig. 4. Management of lead-related tricuspid regurgitation (TR)
ES II – European System for Cardiac Operative Risk Evaluation (EuroSCORE II); HF – heart failure; MELD – Model for End-Stage Liver Disease; PH – pulmonary hypertension; RHC – right heart catheterization; RV – right ventricle; TTVI – transcatheter tricuspid valve intervention; * RV function: tricuspid annular plane systolic excursion (TAPSE) [mm], FAC – fractional area change [%], RV strain [%]; ** mechanisms of TR: perforation, impingement, entanglement, fibrosis.

References (75)

  1. Topilsky Y, Maltais S, Medina Inojosa J, et al. Burden of tricuspid regurgitation in patients diagnosed in the community setting. JACC Cardiovasc Imaging. 2019;12(3):433–442. doi:10.1016/j.jcmg.2018.06.014
  2. Paniagua D, Aldrich HR, Lieberman EH, Lamas GA, Agatston AS. Increased prevalence of significant tricuspid regurgitation in patients with transvenous pacemakers leads. Am J Cardiol. 1998;82(9):1130–1132. doi:10.1016/S0002-9149(98)00567-0
  3. Seo Y, Ishizu T, Nakajima H, Sekiguchi Y, Watanabe S, Aonuma K. Clinical utility of 3-dimensional echocardiography in the evaluation of tricuspid regurgitation caused by pacemaker leads. Circ J. 2008;72(9):1465–1470. doi:10.1253/circj.CJ-08-0227
  4. Arabi P, Özer N, Ateş AH, Yorgun H, Oto A, Aytemir K. Effects of pacemaker and implantable cardioverter defibrillator electrodes on tricuspid regurgitation and right sided heart functions. Cardiol J. 2015;22(6):637–644. doi:10.5603/CJ.a2015.0060
  5. Al-Bawardy R, Krishnaswamy A, Rajeswaran J, et al. Tricuspid regurgitation and implantable devices. Pacing Clin Electrophysiol. 2015;38(2):259–266. doi:10.1111/pace.12530
  6. Delling FN, Hassan ZK, Piatkowski G, et al. Tricuspid regurgitation and mortality in patients with transvenous permanent pacemaker leads. Am J Cardiol. 2016;117(6):988–992. doi:10.1016/j.amjcard.2015.12.038
  7. Rydlewska A, Ząbek A, Boczar K, Lelakowski J, Małecka B. Tricuspid valve regurgitation in the presence of endocardial leads: An underestimated problem. Postepy Kardiol Interwencyjnej. 2017;13(2):165–169. doi:10.5114/pwki.2017.68073
  8. Nakajima H, Seo Y, Ishizu T, et al. Features of lead-induced tricuspid regurgitation in patients with heart failure events after cardiac implantation of electronic devices: A three-dimensional echocardiographic study. Circ J. 2020;84(12):2302–2311. doi:10.1253/circj.CJ-20-0620
  9. Seo Y, Nakajima H, Ishizu T, et al. Comparison of outcomes in patients with heart failure with versus without lead-induced tricuspid regurgitation after cardiac implantable electronic devices implantations. Am J Cardiol. 2020;130:85–93. doi:10.1016/j.amjcard.2020.05.039
  10. Papageorgiou N, Falconer D, Wyeth N, et al. Effect of tricuspid regurgitation and right ventricular dysfunction on long-term mortality in patients undergoing cardiac devices implantation: >10-year follow-up study. Int J Cardiol. 2020;319:52–56. doi:10.1016/j.ijcard.2020.05.062
  11. Lee W, Fang H, Chen H, et al. Progressive tricuspid regurgitation and elevated pressure gradient after transvenous permanent pacemaker implantation. Clin Cardiol. 2021;44(8):1098–1105. doi:10.1002/clc.23656
  12. Riesenhuber M, Spannbauer A, Gwechenberger M, et al. Pacemaker lead-associated tricuspid regurgitation in patients with or without pre-existing right ventricular dilatation. Clin Res Cardiol. 2021;110(6):884–894. doi:10.1007/s00392-021-01812-3
  13. Kanawati J, Ng ACC, Khan H, et al. Long-term follow-up of mortality and heart failure hospitalisation in patients with intracardiac device-related tricuspid regurgitation. Heart Lung Circ. 2021;30(5):692–697. doi:10.1016/j.hlc.2020.08.028
  14. Kim JB, Spevack DM, Tunick PA, et al. The effect of transvenous pacemaker and implantable cardioverter defibrillator lead placement on tricuspid valve function: An observational study. J Am Soc Echocardiogr. 2008;21(3):284–287. doi:10.1016/j.echo.2007.05.022
  15. Mangieri A, Montalto C, Pagnesi M, et al. Mechanism and implications of the tricuspid regurgitation: From the pathophysiology to the current and future therapeutic options. Circ Cardiovasc Interv. 2017;10(7):e005043. doi:10.1161/CIRCINTERVENTIONS.117.005043
  16. Mediratta A, Addetia K, Yamat M, et al. 3D echocardiographic location of implantable device leads and mechanism of associated tricuspid regurgitation. JACC Cardiovasc Imaging. 2014;7(4):337–347. doi:10.1016/j.jcmg.2013.11.007
  17. Webster G, Margossian R, Alexander ME, et al. Impact of transvenous ventricular pacing leads on tricuspid regurgitation in pediatric and congenital heart disease patients. J Interv Card Electrophysiol. 2008;21(1):65–68. doi:10.1007/s10840-007-9183-0
  18. Klutstein M, Balkin J, Butnaru A, Ilan M, Lahad A, Rosenmann D. Tricuspid incompetence following permanent pacemaker implantation. Pacing Clin Electrophysiol. 2009;32(Suppl 1):S135–S137. doi:10.1111/j.1540-8159.2008.02269.x
  19. Alizadeh A, Sanati HR, Haji-Karimi M, et al. Induction and aggravation of atrioventricular valve regurgitation in the course of chronic right ventricular apical pacing. Europace. 2011;13(11):1587–1590. doi:10.1093/europace/eur198
  20. Addetia K, Maffessanti F, Mediratta A, et al. Impact of implantable transvenous device lead location on severity of tricuspid regurgitation. J Am Soc Echocardiogr. 2014;27(11):1164–1175. doi:10.1016/j.echo.2014.07.004
  21. Höke U, Auger D, Thijssen J, et al. Significant lead-induced tricuspid regurgitation is associated with poor prognosis at long-term follow-up. Heart. 2014;100(12):960–968. doi:10.1136/heartjnl-2013-304673
  22. Fanari Z, Hammami S, Hammami MB, Hammami S, Shuraih M. The effects of right ventricular apical pacing with transvenous pacemaker and implantable cardioverter defibrillator on mitral and tricuspid regurgitation. J Electrocardiol. 2015;48(5):791–797. doi:10.1016/j.jelectrocard.2015.07.002
  23. Lee RC, Friedman SE, Kono AT, Greenberg ML, Palac RT. Tricuspid regurgitation following implantation of endocardial leads: Incidence and predictors. Pacing Clin Electrophysiol. 2015;38(11):1267–1274. doi:10.1111/pace.12701
  24. Seo J, Kim DY, Cho I, Hong GR, Ha JW, Shim CY. Prevalence, predictors, and prognosis of tricuspid regurgitation following permanent pacemaker implantation. PLoS One. 2020;15(6):e0235230. doi:10.1371/journal.pone.0235230
  25. Di Mauro M, Bezante GP, Di Baldassarre A, et al. Functional tricuspid regurgitation: An underestimated issue. Int J Cardiol. 2013;168(2):707–715. doi:10.1016/j.ijcard.2013.04.043
  26. Chorin E, Rozenbaum Z, Topilsky Y, et al. Tricuspid regurgitation and long-term clinical outcomes. Eur Heart J Cardiovasc Imaging. 2020;21(2):157–165. doi:10.1093/ehjci/jez216
  27. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–270. doi:10.1093/ehjci/jev014
  28. Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25(1):3–46. doi:10.1016/j.echo.2011.11.010
  29. Deichl AS, Lacour P, Belyavskiy E, et al. Case report. Assessing the position of pacemaker leads via transthoracic echocardiography: Additional value of the subcostal en face view. Front Cardiovasc Med. 2021;8:697052. doi:10.3389/fcvm.2021.697052
  30. Trankle CR, Gertz ZM, Koneru JN, et al. Severe tricuspid regurgitation due to interactions with right ventricular permanent pacemaker or defibrillator leads. Pacing Clin Electrophysiol. 2018;41(7):845–853. doi:10.1111/pace.13369
  31. Cheng Y, Gao H, Tang L, Li J, Yao L. Clinical utility of three-dimensional echocardiography in the evaluation of tricuspid regurgitation induced by implantable device leads. Echocardiography. 2016;33(11):1689–1696. doi:10.1111/echo.13314
  32. Lin G, Nishimura RA, Connolly HM, Dearani JA, Sundt TM, Hayes DL. Severe symptomatic tricuspid valve regurgitation due to permanent pacemaker or implantable cardioverter-defibrillator leads. J Am Coll Cardiol. 2005;45(10):1672–1675. doi:10.1016/j.jacc.2005.02.037
  33. Pang BJ, Joshi SB, Lui EH, et al. Validation of conventional fluoroscopic and ECG criteria for right ventricular pacemaker lead position using cardiac computed tomography. Pacing Clin Electrophysiol. 2014;37(4):495–504. doi:10.1111/pace.12301
  34. Yu YJ, Chen Y, Lau CP, et al. Nonapical right ventricular pacing is associated with less tricuspid valve interference and long-term progress of tricuspid regurgitation. J Am Soc Echocardiogr. 2020;33(11):1375–1383. doi:10.1016/j.echo.2020.06.014
  35. Rajappan K. Permanent pacemaker implantation technique: Part II. Heart. 2009;95(4):334–342. doi:10.1136/hrt.2008.156372
  36. Polewczyk A, Kutarski A, Tomaszewski A, et al. Lead dependent tricuspid dysfunction: Analysis of the mechanism and management in patients referred for transvenous lead extraction. Cardiol J. 2013;20(4):402–410. doi:10.5603/CJ.2013.0099
  37. Henry M, Abutaleb A, Jeevanandam V, et al. Anatomic description of tricuspid apparatus interference from implantable intracardiac devices. JACC Cardiovasc Imaging. 2022;15(2):361–365. doi:10.1016/j.jcmg.2020.12.016
  38. Chang JD, Manning WJ, Ebrille E, Zimetbaum PJ. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. J Am Coll Cardiol. 2017;69(18):2331–2341. doi:10.1016/j.jacc.2017.02.055
  39. Occhetta E, Bortnik M, Magnani A, et al. Prevention of ventricular desynchronization by permanent para-Hisian pacing after atrioventricular node ablation in chronic atrial fibrillation: A crossover, blinded, randomized study versus apical right ventricular pacing. J Am Coll Cardiol. 2006;47(10):1938–1945. doi:10.1016/j.jacc.2006.01.056
  40. Lewicka-Nowak E, Dabrowska-Kugacka A, Tybura S, et al. Right ventricular apex versus right ventricular outflow tract pacing: Prospective, randomised, long-term clinical and echocardiographic evaluation. Kardiol Pol. 2006;64(10):1082–1091; discussion 1092–1093. PMID:17089240.
  41. Addetia K, Harb SC, Hahn RT, Kapadia S, Lang RM. Cardiac implantable electronic device lead-induced tricuspid regurgitation. JACC Cardiovasc Imaging. 2019;12(4):622–636. doi:10.1016/j.jcmg.2018.09.028
  42. Orban M, Orban M, Hausleiter J, Braun D. Tricuspid regurgitation and right ventricular dysfunction after cardiac device implanta­tion: Is it time for intra-procedural TEE-guided lead implantation? Int J Cardiol. 2020;321:131–132. doi:10.1016/j.ijcard.2020.07.010
  43. Gmeiner J, Sadoni S, Orban M, et al. Prevention of pacemaker lead-induced tricuspid regurgitation by transesophageal echocardiography guided implantation. JACC Cardiovasc Interv. 2021;14(23):2636–2638. doi:10.1016/j.jcin.2021.08.042
  44. Saito M, Iannaccone A, Kaye G, Negishi K, Kosmala W, Marwick TH. Effect of right ventricular pacing on right ventricular mechanics and tricuspid regurgitation in patients with high-grade atrioventricular block and sinus rhythm (from the Protection of Left Ventricular Function During Right Ventricular Pacing study). Am J Cardiol. 2015;116(12):1875–1882. doi:10.1016/j.amjcard.2015.09.041
  45. Mutlak D, Aronson D, Lessick J, Reisner SA, Dabbah S, Agmon Y. Functional tricuspid regurgitation in patients with pulmonary hypertension: Is pulmonary artery pressure the only determinant of regurgitation severity? Chest. 2009;135(1):115–121. doi:10.1378/chest.08-0277
  46. Cork DP, McCullough PA, Mehta HS, et al. The economic impact of clinically significant tricuspid regurgitation in a large, administrative claims database. J Med Econ. 2020;23(5):521–528. doi:10.1080/13696998.2020.1718681
  47. Wang N, Fulcher J, Abeysuriya N, et al. Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: A systematic review and meta-analysis. Eur Heart J. 2019;40(5):476–484. doi:10.1093/eurheartj/ehy641
  48. Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev Esp Cardiol (Engl Ed). 2022;75(6):524. doi:10.1016/j.rec.2022.05.006
  49. Brescia AA, Ward ST, Watt TMF, et al. Outcomes of guideline-directed concomitant annuloplasty for functional tricuspid regurgitation. Ann Thorac Surg. 2020;109(4):1227–1232. doi:10.1016/j.athoracsur.2019.07.035
  50. Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021;42(35):3427–3520. doi:10.1093/eurheartj/ehab364
  51. Wong W, Chen S, Chou A, et al. Late outcomes of valve repair versus replacement in isolated and concomitant tricuspid valve surgery: A nationwide cohort study. J Am Heart Assoc. 2020;9(8):e015637. doi:10.1161/JAHA.119.015637
  52. Fender EA, Zack CJ, Nishimura RA. Isolated tricuspid regurgitation: Outcomes and therapeutic interventions. Heart. 2018;104(10):798–806. doi:10.1136/heartjnl-2017-311586
  53. Tonko JB, Rinaldi CA. Non-traditional implantable cardioverter-defibrillator configurations and insertion techniques: A review of contemporary options. Europace. 2022;24(2):181–192. doi:10.1093/europace/euab178
  54. Shivamurthy P, Miller MA, El-Eshmawi A, et al. Leadless pacemaker implantation under direct visualization during valve surgery. J Thorac Cardiovasc Surg. 2022;163(5):1818–1825. doi:10.1016/j.jtcvs.2020.07.092
  55. Lurz P, von Bardeleben RS, Weber M, et al. Transcatheter edge-to-edge repair for treatment of tricuspid regurgitation. J Am Coll Cardiol. 2021;77(3):229–239. doi:10.1016/j.jacc.2020.11.038
  56. Nickenig G, Weber M, Schueler R, et al. 6-month outcomes of tricuspid valve reconstruction for patients with severe tricuspid regurgitation. J Am Coll Cardiol. 2019;73(15):1905–1915. doi:10.1016/j.jacc.2019.01.062
  57. Fam NP, von Bardeleben RS, Hensey M, et al. Transfemoral transcatheter tricuspid valve replacement with the EVOQUE system: A multicenter, observational, first-in-human experience. JACC Cardiovasc Interv. 2021;14(5):501–511. doi:10.1016/j.jcin.2020.11.045
  58. Taramasso M, Benfari G, van der Bijl P, et al. Transcatheter versus medical treatment of patients with symptomatic severe tricuspid regurgitation. J Am Coll Cardiol. 2019;74(24):2998–3008. doi:10.1016/j.jacc.2019.09.028
  59. Taramasso M, Gavazzoni M, Pozzoli A, et al. Outcomes of TTVI in patients with pacemaker or defibrillator leads: Data from the TriValve registry. JACC Cardiovasc Interv. 2020;13(5):554–564. doi:10.1016/j.jcin.2019.10.058
  60. Polewczyk A, Jacheć W, Nowosielecka D, et al. Lead dependent tricuspid valve dysfunction-risk factors, improvement after transvenous lead extraction and long-term prognosis. J Clin Med. 2021;11(1):89. doi:10.3390/jcm11010089
  61. Nazmul MN, Cha YM, Lin G, Asirvatham SJ, Powell BD. Percutaneous pacemaker or implantable cardioverter-defibrillator lead removal in an attempt to improve symptomatic tricuspid regurgitation. Europace. 2013;15(3):409–413. doi:10.1093/europace/eus342
  62. Zaidi SMJ, Sohail H, Satti DI, et al. Tricuspid regurgitation in His bundle pacing: A systematic review. Ann Noninvasive Electrocardiol. 2022;27(6):e12986. doi:10.1111/anec.12986
  63. Beurskens NEG, Tjong FVY, de Bruin-Bon RHA, et al. Impact of leadless pacemaker therapy on cardiac and atrioventricular valve function through 12 months of follow-up. Circ Arrhythm Electrophysiol. 2019;12(5):e007124. doi:10.1161/CIRCEP.118.007124
  64. Haeberlin A, Bartkowiak J, Brugger N, et al. Evolution of tricuspid valve regurgitation after implantation of a leadless pacemaker: A single center experience, systematic review, and meta‐analysis. J Cardiovasc Electrophysiol. 2022;33(7):1617–1627. doi:10.1111/jce.15565
  65. Kobara S, Okamura A, Kato M, Ogura K, Nishimura M, Yamamoto K. Severe tricuspid regurgitation with chordae tendinae rupture after leadless pacemaker implantation. Circ J. 2022;86(5):880. doi:10.1253/circj.CJ-21-0860
  66. Garza Ovalle O, Liebelt J, Garza Ovalle A, Kaufman A, Alexander J, Metzl M. Utility of a leadless pacemaker as a backup to left ventricle-only pacing in a patient with prior device-related severe tricuspid regurgitation. J Innov Cardiac Rhythm Manag. 2019;10(7):3733–3736. doi:10.19102/icrm.2019.100706
  67. Stocker TJ, Hertell H, Orban M, et al. Cardiopulmonary hemodynamic profile predicts mortality after transcatheter tricuspid valve repair in chronic heart failure. JACC Cardiovasc Interv. 2021;14(1):29–38. doi:10.1016/j.jcin.2020.09.033
  68. Kavsur R, Hupp H, Sugiura A, et al. Pulmonary capillary wedge pressure (PCWP) as prognostic indicator in patients undergoing transcatheter valve repair (TTVR) of severe tricuspid regurgitation. Int J Cardiol. 2020;318:32–38. doi:10.1016/j.ijcard.2020.06.031
  69. Färber G, Marx J, Scherag A, et al. Risk stratification for isolated tricuspid valve surgery assisted using the Model for End-Stage Liver Disease score [published online as ahead of print onn March 12, 2022]. J Thorac Cardiovasc Surg. 2022. doi:10.1016/j.jtcvs.2021.11.102
  70. Leibowitz DW, Rosenheck S, Pollak A, Geist M, Gilon D. Transvenous pacemaker leads do not worsen tricuspid regurgitation: A prospective echocardiographic study. Cardiology. 2000;93(1–2):74–77. doi:10.1159/000007005
  71. Kucukarslan N, Kirilmaz A, Ulusoy E, et al. Tricuspid insufficiency does not increase early after permanent implantation of pacemaker leads. J Card Surg. 2006;21(4):391–394. doi:10.1111/j.1540-8191.2006.00251.x
  72. Schleifer JW, Pislaru SV, Lin G, et al. Effect of ventricular pacing lead position on tricuspid regurgitation: A randomized prospective trial. Heart Rhythm. 2018;15(7):1009–1016. doi:10.1016/j.hrthm.2018.02.026
  73. Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30(4):303–371. doi:10.1016/j.echo.2017.01.007
  74. Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2021;77(4):e25–e197. doi:10.1016/j.jacc.2020.11.018
  75. Lancellotti P, Tribouilloy C, Hagendorff A, et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2013;14(7):611–644. doi:10.1093/ehjci/jet105