Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2023, vol. 32, nr 4, April, p. 395–399

doi: 10.17219/acem/159477

Publication type: editorial

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Sfera A, Hazan S, Kozlakidis Z, Klein C. Microbiota-derived psychedelics: Lessons from COVID-19. Adv Clin Exp Med. 2023;32(4):395–399. doi:10.17219/acem/159477

Microbiota-derived psychedelics: Lessons from COVID-19

Adonis Sfera1,2,A, Sabine Hazan3,B, Zisis Kozlakidis4,E, Carolina Klein5,F

1 Department of Psychiatry, Patton State Hospital, San Bernardino, USA

2 Department of Psychiatry, University of California Riverside, USA

3 ProgenaBiome, Ventura, USA

4 The International Agency for Research on Cancer, Lyon, France

5 Department of Psychiatry, Napa State Hospital, USA

Abstract

Emil Kraepelin believed that dementia praecox, the disorder we now call schizophrenia, was caused by the brain being poisoned with toxins generated in other parts of the body, especially the mouth, intestine or genitals. In this regard, Kraepelin hinted at the microbiome and conceptualized microbial molecules as drivers of severe psychiatric illness. However, it was not until the coronavirus disease (COVID-19) pandemic that Kraepelin’s paradigm gained traction, particularly because this virus was associated with both gut barrier disruption and new-onset psychosis.

Likewise, despite numerous studies linking severe psychiatric illness to genomic damage and dysfunctional DNA repair, this pathogenetic mechanism was underappreciated before the COVID-19 pandemic.

The use of the psychotomimetic anesthetic, ketamine, for treatment-resistant depression has reawakened the interest in endogenous serotonergic hallucinogens, especially tryptamine and N,N-dimethyltryptamine (DMT), which are beneficial for depression but associated with psychosis.

In this editorial, we take a closer look at the role of the microbiome in psychopathology, attempting to answer 2 questions:

1. Why may psychosis-predisposing serotonergic hallucinogens alleviate depression?

2. Are microbiota-derived psychedelics part of an inbuilt antidepressant system similar to endogenous opioids?

Key words: gut microbes, serotonergic hallucinogens, severe psychiatric illness

 

Introduction

Two major advances, the discovery of trace amine-associated receptors (TAARs) in 2001 and ketamine use for treatment-resistant depression, have contributed to a better understanding of the gut microbiota’s role in psychopathology.1, 2

These findings were further corroborated by the discovery, in 2014, of tryptophan decarboxylase-expressing gut commensals capable of converting dietary tryptophan into tryptamine, a serotonergic hallucinogen previously implicated in schizophrenia.3, 4, 5 Although the physiological role of endogenous hallucinogens so far unknown, translocation of tryptophan decarboxylase-expressing microbes into the host systemic circulation may enable tryptamine to access the central nervous system (CNS) and interact with brain TAARs.6 Indeed, the discovery of N,N-dimethyltryptamine (DMT) and N-acetyltryptamine (NAT) in rat pineal gland suggests that endogenous hallucinogens are either synthesized in the CNS or derived from gut microbes.7, 8

We hypothesize that serotonergic hallucinogens and their CNS receptors comprise an endogenous antidepressant system mediated by TAARs, and that elevated levels of tryptamine or DMT due to a disrupted gut barrier may activate 5-hydroxytryptamine 2A receptors (5HT2ARs) and the aryl hydrocarbon receptor (AhR), and in consequence trigger psychosis. In other words, the activation of TAAR may drive the antidepressant effect, while stimulation of 5HT2ARs and AhR may engender psychosis.

Loose microbes
and aberrant microglia

Studies on intestinal barrier disruption and an increased prevalence of psychiatric disorders after the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have contributed to a better understanding of the physiological role of microbiota-generated serotonergic hallucinogens as well as the participation of other gut microorganisms in the pathogenesis of severe psychiatric illness (SPI), conceptualized as mental or behavioral conditions which substantially interfere with patients’ life activities.9, 10, 11, 12, 13, 14, 15, 16

Along this line, a recent retrospective study found that 19.5% of coronavirus disease (COVID-19) survivors developed depression or anxiety, and nearly 2.8% developed new-onset psychosis, linking the SARS-CoV-2 disruption of the gut barrier to neuropathology.17 The psychological stress caused by contracting COVID-19, a potentially fatal disease, as well as the subsequent restrictive measures, including mandatory isolation and social distancing, can trigger mood and anxiety disorders. However, psychological stress has been associated with the impairment of both the gut barrier and microglial activation.18, 19, 20 Indeed, several viral infections, including COVID-19 and human immunodeficiency virus (HIV), were associated with higher rates of post-traumatic stress disorder (PTSD) than those found in war veterans as well as military and law enforcement personnel, suggesting that aside from psychosocial stress, viruses could directly interfere with the gut and/or blood–brain barrier (BBB).21, 22, 23 Moreover, microbial translocation markers, including zonulin, intestinal fatty acid binding protein (I-FABP) and soluble CD14 (sCD14), were documented in people with depression and suicidal behavior.24 Along this line, a novel study linked suicidal ideation with depletion of the oral microbe Alloprevotella rava spp., further emphasizing the role of microbiota in neuropathology.25 Indeed, previous studies have associated SPI with increased gastrointestinal (GI) tract permeability measured by the levels of microbial translocation markers.26, 27 In this regard, earlier data linked SPI to the translocation of Escherichia coli spp. (E. coli) into the host systemic circulation.28, 29 In addition, neuropsychiatric symptoms, including psychosis, were documented in 2011 during an E. coli outbreak in northern Germany, further connecting this bacterium to neuropathology.30, 31 Moreover, E. coli antigens, including lipopolysaccharide (LPS) and flagellin, were shown to aberrantly activate microglia, potentially leading to pathological phagocytosis of viable neurons and/or synapses.32, 33 Flagellin, a Toll-like receptor-5 (TLR-5) agonist, was demonstrated to activate neurotoxic microglia, inducing gray matter loss in patients with SPI34, 35 (see the section on microbial genotoxins and SPI). Interestingly, serotonergic hallucinogen DMT was found capable of protecting neurons by deactivating microglia, emphasizing an important physiological function of this biomolecule.36

Taken together, these studies show that the systemic translocation of bacteria and/or their molecules can activate neurotoxic microglia that aberrantly eliminate healthy neurons. On the other hand, serotonergic hallucinogens may show neuroprotective properties by inhibiting neurotoxic microglia.

Endogenous hallucinogens – friends or foes?

Early studies, in the 1960s and 1970s, have connected SPI with endogenous hallucinogens derived from several sources, including the microbial metabolism of tryptophan.3, 4 These older studies were disregarded at the time due to the levels of endogenous psychedelics being considered too low to produce significant biological effects. However, the discovery of TAARs capable of sensing nanomolar ligand quantities has reawakened the interest in endogenous hallucinogens and their involvement in SPI.37, 38 As both ketamine, an N-methyl-D-aspartate (NMDA) receptor blocker, and serotonergic hallucinogens exhibit fast-acting antidepressant effects, it begs the question: how can psychosis-associated molecules alleviate depression?39

We surmise that microbiota-derived serotonergic hallucinogens are beneficial for severe depression as they induce limited genomic disruption that activates DNA damage repair (DDR), a neuroplasticity-mediating physiological process. Indeed, novel studies have shown that DDR comprises an adaptive mechanism that enhances neuronal plasticity and long-term potentiation.40, 41 On the other hand, irreparable genomic damage, leading to neuronal death, contributes to the pathogenesis of neurodegenerative disorders and/or psychosis.42, 43 For example, recreational use of exogenous hallucinogens may inflict extensive DNA damage, triggering psychosis, a pathology documented in users of d-lysergic acid diethylamide (LSD) or psilocybin.44, 45

Taken together, limited DNA damage enhances neuroplasticity, inducing antidepressant effects. On the other hand, extensive genomic damage may trigger psychosis or neurodegeneration by converting microglia into a neurotoxic phenotype.

Microbial genotoxins and SPI

The SARS-CoV-2 virus was found to disrupt the human genome, probably accounting for the new-onset psychosis that sometimes accompanies COVID-19 critical illness.46, 47 Indeed, DNA damage-induced neuropathology, though a phenomenon already known before the COVID-19 pandemic, remained underappreciated as a pathogenetic factor of SPI until recently.48, 49, 50, 51, 52, 53

Several E. coli species were demonstrated to produce colibactin, a genotoxic molecule associated with inflammatory bowel disease (IBD), colorectal carcinoma (CRC) and possibly schizophrenia. Moreover, Morganella morganii spp. (M. morganii) was found to damage the host DNA by releasing indolimines, genotoxic colibactin-like molecules.54 Interestingly, both E. coli and M. morganii were previously implicated in schizophrenia, further linking DNA damage to psychopathology.55 Interestingly, M. morganii was demonstrated to cause food poisoning by secreting serotonergic hallucinogens and histamine, connecting this gut commensal to SPI.56, 57, 58

Aside from damaging the DNA, both colibactin and indolimine can increase the permeability of the gut barrier, facilitating microbial translocation from the GI tract into host tissues.59, 60, 61, 62, 63 In addition, colibactin and indolimine were demonstrated to activate bacteriophages in gut microbes, likely increasing the abundance of bacteriophage-resistant tryptophan decarboxylase-expressing commensals and the levels of endogenous hallucinogens.64, 65 Notably, patients with schizophrenia were recently reported to exhibit altered oropharyngeal bacteriophages (phageome), connecting this disorder to microbial genotoxin-induced DNA damage.66 Several studies connected interleukin 10 (IL-10) with E. coli infection, a microbe associated with genomic damage and schizophrenia (Figure 1).67

Taken together, some gut microbes release genotoxic molecules that can reactivate both latent viruses, such as Epstein–Barr virus (EBV), as well as bacteriophages, triggering various pathologies, including SPI.68

The link between the microbiome and SPI

Several studies have reported altered microbial composition in patients with SPI.69 For example, compared to healthy controls, the fecal microbiome of patients with schizophrenia exhibits an increased abundance of phylum Proteobacteria, especially genus Succinivibrio.70 On the other hand, the oropharyngeal microbiome of individuals with first-episode psychosis (FEP) was found to display increased levels of lactic acid bacteria and Lactobacillus phage.66, 71 As lactic acid microbes utilize glucose as a carbon source for generating pyruvate, these changes in the microbiome likely point to the preponderance of glycolysis as compared to oxidative phosphorylation (OXPHOS) in SPI.72 Indeed, mitochondrial dysfunction and impaired OXPHOS were previously demonstrated in schizophrenia.73

Conclusions

Gut microbiota, comprised of bacteria, fungi and viruses, can underlie pathological circumstances and translocate outside the GI tract, triggering immunogenicity and hyperinflammation that may disrupt both the host genome and DDR, engendering SPI.

Gut microbiota-generated endogenous hallucinogens, acting via TAARs, likely comprise an inbuilt antidepressant system akin to endogenous opioids. Dysfunctional AhR signaling can damage neuronal DNA, inducing SPI by neurotoxic microglia.

More studies are needed to elucidate the antidepressant function as well as the nonmicrobial sources of endogenous hallucinogens, as it is currently uncertain whether these compounds are also synthesized in the human brain.

Figures


Fig. 1. Numerous pathogens and their molecules can damage the host genome. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus upregulates angiotensin II (ANG II), a genotoxin, by inhibiting its hydrolyzing enzyme, ACE-2. The Escherichia coli spp. (E. coli) protein, flagellin, activates toll-like receptor-5 (TLR-5), upregulating interleukin 10 (IL-10) that in turn can damage the DNA. Dysfunctional serotonergic hallucinogens and bacterial genotoxins can inflict additional genomic damage, activate microglia and cause severe psychiatric illness (SPI) by aberrant phagocytosis of viable neurons

References (73)

  1. Borowsky B, Adham N, Jones KA, et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A. 2001;98(16):8966–8971. doi:10.1073/pnas.151105198
  2. Serafini G, Howland R, Rovedi F, Girardi P, Amore M. The role of ketamine in treatment-resistant depression: A systematic review. Curr Neuropharmacol. 2014;12(5):444–461. doi:10.2174/1570159X12666140619204251
  3. Williams BB, Van Benschoten AH, Cimermancic P, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014;16(4):495–503. doi:10.1016/j.chom.2014.09.001
  4. Rodnight R, Murray RM, Oon MCH, Brockington IF, Nicholls P, Birley JLT. Urinary dimethyltryptamine and psychiatric symptomatology and classification. Psychol Med. 1977;6(4):649–657. doi:10.1017/S0033291700018304
  5. Berlet HH, Pscheidt GR, Spaide JK, Himwich HE. Variations of urinary creatinine and its correlation to tryptamine excretion in schizophrenic patients. Nature. 1964;203(4950):1198–1199. doi:10.1038/2031198a0
  6. Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe. 2018;23(6):775–785.e5. doi:10.1016/j.chom.2018.05.004
  7. Nichols DE. N,N-dimethyltryptamine and the pineal gland: Separating fact from myth. J Psychopharmacol. 2018;32(1):30–36. doi:10.1177/0269881117736919
  8. Lee BH, Bussi IL, Iglesia HO, Hague C, Koh D, Hille B. Two indoleamines are secreted from rat pineal gland at night and act on melatonin receptors but are not night hormones. J Pineal Res. 2020;68(2):e12622. doi:10.1111/jpi.12622
  9. Oliva A, Miele MC, Di Timoteo F, et al. Persistent systemic microbial translocation and intestinal damage during coronavirus disease-19. Front Immunol. 2021;12:708149. doi:10.3389/fimmu.2021.708149
  10. Palomino-Kobayashi LA, Ymaña B, Ruiz J, Mayanga-Herrera A, Ugarte-Gil MF, Pons MJ. Zonulin, a marker of gut permeability, is associated with mortality in a cohort of hospitalised peruvian COVID-19 patients. Front Cell Infect Microbiol. 2022;12:1000291. doi:10.3389/fcimb.2022.1000291
  11. Mourani SC. Mechanisms of new-onset psychosis during the COVID-19 pandemic: What ignited the fire? Ann Clin Psychiatry. 2022;34(2):123–135. doi:10.12788/acp.0065
  12. Runyan M, Fawver J, Coupe A, Drouin M. New-onset psychosis following COVID-19 infection in a patient with no psychiatric history: A longitudinal case report. Psychiatry Res Case Rep. 2022;1(2):100035. doi:10.1016/j.psycr.2022.100035
  13. Semple E, Beauchamp A, Shobassy A. COVID-19 leading to new-onset psychosis and suicide. Ann Clin Psychiatry. 2022;34(3):207–208. doi:10.12788/acp.0071
  14. Desai S, Sheikh B, Belzie L. New-onset psychosis following COVID-19 infection. Cureus. 2021;13(9):e17904. doi:10.7759/cureus.17904
  15. Kozato N, Mishra M, Firdosi M. New-onset psychosis due to COVID-19. BMJ Case Rep. 2021;14(4):e242538. doi:10.1136/bcr-2021-242538
  16. Segev A, Hirsch-Klein E, Kotz G, et al. Trends of new-onset psychosis or mania in psychiatric emergency departments during the COVID19 pandemic: A longitudinal comparative study. Sci Rep. 2021;11(1):21002. doi:10.1038/s41598-021-00310-w
  17. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–427. doi:10.1016/S2215-0366(21)00084-5
  18. Varanoske AN, McClung HL, Sepowitz JJ, et al. Stress and the gut–brain axis: Cognitive performance, mood state, and biomarkers of blood–brain barrier and intestinal permeability following severe physical and psychological stress. Brain Behav Immun. 2022;101:383–393. doi:10.1016/j.bbi.2022.02.002
  19. Ilchmann-Diounou H, Menard S. Psychological stress, intestinal barrier dysfunctions, and autoimmune disorders: An overview. Front Immunol. 2020;11:1823. doi:10.3389/fimmu.2020.01823
  20. Yuan TF, Hou G, Zhao Y, Arias-Carrion O. Commentary: The effects of psychological stress on microglial cells in the brain. CNS Neurol Disord Drug Targets. 2015;14(3):304–308. doi:10.2174/1871527314666150123122851
  21. Gates MA, Holowka DW, Vasterling JJ, Keane TM, Marx BP, Rosen RC. Posttraumatic stress disorder in veterans and military personnel: Epidemiology, screening, and case recognition. Psychol Serv. 2012;9(4):361–382. doi:10.1037/a0027649
  22. Siyahhan Julnes P, Auh S, Krakora R, et al. The association between post-traumatic stress disorder and markers of inflammation and immune activation in HIV-infected individuals with controlled viremia. Psychosomatics. 2016;57(4):423–430. doi:10.1016/j.psym.2016.02.015
  23. Yuan K, Gong YM, Liu L, et al. Prevalence of posttraumatic stress disorder after infectious disease pandemics in the twenty-first century, including COVID-19: A meta-analysis and systematic review. Mol Psychiatry. 2021;26(9):4982–4998. doi:10.1038/s41380-021-01036-x
  24. Ohlsson L, Gustafsson A, Lavant E, et al. Leaky gut biomarkers in depression and suicidal behavior. Acta Psychiatr Scand. 2019;139(2):185–193. doi:10.1111/acps.12978
  25. Ahrens AP, Sanchez-Padilla DE, Drew JC, Oli MW, Roesch LFW, Triplett EW. Saliva microbiome, dietary, and genetic markers are associated with suicidal ideation in university students. Sci Rep. 2022;12(1):14306. doi:10.1038/s41598-022-18020-2
  26. Severance EG, Gressitt KL, Stallings CR, et al. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res. 2013;148(1–3):130–137. doi:10.1016/j.schres.2013.05.018
  27. Giron LB, Dweep H, Yin X, et al. Plasma markers of disrupted gut permeability in severe COVID-19 patients. Front Immunol. 2021;12:686240. doi:10.3389/fimmu.2021.686240
  28. Singh GP, Kansal NK, Loona N. “Psychosis and Escherichia coli infection: A forgotten issue”: Our observation. Indian J Psychol Med. 2013;35(4):425. doi:10.4103/0253-7176.122250
  29. Krøll J. E. coli antibodies in schizophrenia. Psychol Med. 1986;16(1):209–211. doi:10.1017/S0033291700002646
  30. Chen BY, Hsu CC, Chen YZ, et al. Profiling antibody signature of schizophrenia by Escherichia coli proteome microarrays. Brain Behav Immun. 2022;106:11–20. doi:10.1016/j.bbi.2022.07.162
  31. Wiwanitkit V. Psychosis and E. coli infection: A forgotten issue. Indian J Psychol Med. 2012;34(4):407–408. doi:10.4103/0253-7176.108241
  32. Kleimann A, Toto S, Eberlein CK, et al. Psychiatric symptoms in patients with Shiga toxin-producing E. coli O104:H4 induced haemolytic-uraemic syndrome. PLoS One. 2014;9(7):e101839. doi:10.1371/journal.pone.0101839
  33. Li Z, Ding B, Ali MRK, Zhao L, Zang X, Lv Z. Dual effect of tryptamine on prostate cancer cell growth regulation: A pilot study. Int J Mol Sci. 2022;23(19):11087. doi:10.3390/ijms231911087
  34. Gonçalves S, Nunes-Costa D, Cardoso SM, Empadinhas N, Marugg JD. Enzyme promiscuity in serotonin biosynthesis, from bacteria to plants and humans. Front Microbiol. 2022;13:873555. doi:10.3389/fmicb.2022.873555
  35. Ifuku M, Hinkelmann L, Kuhrt LD, et al. Activation of Toll-like receptor 5 in microglia modulates their function and triggers neuronal injury. Acta Neuropathol Commun. 2020;8(1):159. doi:10.1186/s40478-020-01031-3
  36. Mallya AP, Deutch AY. (Micro)glia as effectors of cortical volume loss in schizophrenia. Schizophr Bull. 2018;44(5):948–957. doi:10.1093/schbul/sby088
  37. Jiménez JH, Bouso JC. Significance of mammalian N, N-dimethyltryptamine (DMT): A 60-year-old debate. J Psychopharmacol. 2022;36(8):905–919. doi:10.1177/02698811221104054
  38. dos Santos RG, Hallak JEC. Therapeutic use of serotoninergic hallucinogens: A review of the evidence and of the biological and psychological mechanisms. Neurosci Biobehav Rev. 2020;108:423–434. doi:10.1016/j.neubiorev.2019.12.001
  39. Kadriu B, Greenwald M, Henter ID, et al. Ketamine and serotonergic psychedelics: Common mechanisms underlying the effects of rapid-acting antidepressants. Indian J Neuropsychopharmacol. 2021;24(1):8–21. doi:10.1093/ijnp/pyaa087
  40. Konopka A, Atkin JD. The role of DNA damage in neural plasticity in physiology and neurodegeneration. Front Cell Neurosci. 2022;16:836885. doi:10.3389/fncel.2022.836885
  41. Weber Boutros S, Unni VK, Raber J. An adaptive role for DNA double-strand breaks in hippocampus-dependent learning and memory. Int J Mol Sci. 2022;23(15):8352. doi:10.3390/ijms23158352
  42. Lu T, Pan Y, Kao SY, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429(6994):883–891. doi:10.1038/nature02661
  43. Raza MU, Tufan T, Wang Y, Hill C, Zhu MY. DNA damage in major psychiatric diseases. Neurotox Res. 2016;30(2):251–267. doi:10.1007/s12640-016-9621-9
  44. De Gregorio D, Comai S, Posa L, Gobbi G. D-lysergic acid diethylamide (LSD) as a model of psychosis: Mechanism of action and pharmacology. Int J Mol Sci. 2016;17(11):1953. doi:10.3390/ijms17111953
  45. Vollenweider FX, Vollenweider-Scherpenhuyzen MFI, Bäbler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport. 1998;9(17):3897–3902. doi:10.1097/00001756-199812010-00024
  46. Mihaljevic O, Zivancevic-Simonovic S, Cupurdija V, et al. DNA damage in peripheral blood lymphocytes of severely ill COVID-19 patients in relation to inflammatory markers and parameters of hemostasis. Mutagenesis. 2022;37(3–4):203–212. doi:10.1093/mutage/geac011
  47. Desai S, Sheikh B, Belzie L. New-onset psychosis following COVID-19 infection. Cureus. 2021;13(9):e17904. doi:10.7759/cureus.17904
  48. Napoli E, Wong S, Giulivi C. Evidence of reactive oxygen species-mediated damage to mitochondrial DNA in children with typical autism. Mol Autism. 2013;4(1):2. doi:10.1186/2040-2392-4-2
  49. Saadat M, Pakyari N, Farrashbandi H. Genetic polymorphism in the DNA repair gene XRCC1 and susceptibility to schizophrenia. Psychiatry Res. 2008;157(1–3):241–245. doi:10.1016/j.psychres.2007.07.014
  50. Psimadas D, Messini-Nikolaki N, Zafiropoulou M, Fortos A, Tsilimigaki S, Piperakis SM. DNA damage and repair efficiency in lymphocytes from schizophrenic patients. Cancer Lett. 2004;204(1):33–40. doi:10.1016/j.canlet.2003.09.022
  51. Odemis S, Tuzun E, Gulec H, et al. Association between polymorphisms of DNA repair genes and risk of schizophrenia. Genet Test Mol Biomarkers. 2016;20(1):11–17. doi:10.1089/gtmb.2015.0168
  52. Shpyleva S, Ivanovsky S, de Conti A, et al. Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T+tf/J mouse model of autism and similarities with human post mortem cerebellum. PLoS One. 2014;9(11):e113712. doi:10.1371/journal.pone.0113712
  53. Raza MU, Tufan T, Wang Y, Hill C, Zhu MY. DNA damage in major psychiatric diseases. Neurotox Res. 2016;30(2):251–267. doi:10.1007/s12640-016-9621-9
  54. Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 2022;28(30):4053–4060. doi:10.3748/wjg.v28.i30.4053
  55. Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF. In schizophrenia, increased plasma IgM/IgA responses to gut commensal bacteria are associated with negative symptoms, neurocognitive impairments, and the deficit phenotype. Neurotox Res. 2019;35(3):684–698. doi:10.1007/s12640-018-9987-y
  56. Ruiz-Capillas C, Herrero AM. Impact of biogenic amines on food quality and safety. Foods. 2019;8:62. doi:10.3390/foods8020062
  57. Jacob MS, Presti DE. Endogenous psychoactive tryptamines reconsidered: An anxiolytic role for dimethyltryptamine. Med Hypotheses. 2005;64(5):930–937. doi:10.1016/j.mehy.2004.11.005
  58. Noworyta-Sokołowska K, Kamińska K, Kreiner G, Rogóż Z, Gołembiowska K. Neurotoxic effects of 5-MeO-DIPT: A psychoactive tryptamine derivative in rats. Neurotox Res. 2016;30(4):606–619. doi:10.1007/s12640-016-9654-0
  59. Cao Y, Oh J, Xue M, et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science. 2022;378(6618):eabm3233. doi:10.1126/science.abm3233
  60. Dziubańska-Kusibab PJ, Berger H, Battistini F, et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med. 2020;26(7):1063–1069. doi:10.1038/s41591-020-0908-2
  61. Markkanen E, Meyer U, Dianov G. DNA damage and repair in schizophrenia and autism: Implications for cancer comorbidity and beyond. Int J Mol Sci. 2016;17(6):856. doi:10.3390/ijms17060856
  62. Czarny P, Bialek K, Ziolkowska S, Strycharz J, Sliwinski T. DNA damage and repair in neuropsychiatric disorders: What do we know and what are the future perspectives? Mutagenesis. 2019;35(1):79–106. doi:10.1093/mutage/gez035
  63. Topak OZ, Ozdel O, Dodurga Y, Secme M. An evaluation of the differences in DNA damage in lymphocytes and repair efficiencies in patients with schizophrenia and schizoaffective disorder. Schizophr Res. 2018;202:99–105. doi:10.1016/j.schres.2018.06.052
  64. Silpe JE, Wong JWH, Owen SV, Baym M, Balskus EP. The bacterial toxin colibactin triggers prophage induction. Nature. 2022;603(7900):315–320. doi:10.1038/s41586-022-04444-3
  65. Gots JS, Koh WY, Hunt GR. Tryptophan metabolism and its relation to phage resistance in Escherichia coli. J Gen Microbiol. 1954;11(1):7–16. doi:10.1099/00221287-11-1-7
  66. Yolken RH, Severance EG, Sabunciyan S, et al. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls. Schizophr Bull. 2015;41(5):1153–1161. doi:10.1093/schbul/sbu197
  67. Drage LKL, Robson W, Mowbray C, et al. Elevated urine IL-10 concentrations associate with Escherichia coli persistence in older patients susceptible to recurrent urinary tract infections. Immun Ageing. 2019;16(1):16. doi:10.1186/s12979-019-0156-9
  68. Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry. 2008;13(2):208–221. doi:10.1038/sj.mp.4002042
  69. Dinan TG, Borre YE, Cryan JF. Genomics of schizophrenia: Time to consider the gut microbiome? Mol Psychiatry. 2014;19(12):1252–1257. doi:10.1038/mp.2014.93
  70. Shen Y, Xu J, Li Z, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res. 2018;197:470–477. doi:10.1016/j.schres.2018.01.002
  71. Castro-Nallar E, Bendall ML, Pérez-Losada M, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ. 2015;3:e1140. doi:10.7717/peerj.1140
  72. Huang YC, Lin PY, Lee Y, et al. β-hydroxybutyrate, pyruvate and metabolic profiles in patients with schizophrenia: A case control study. Psychoneuroendocrinology. 2016;73:1–8. doi:10.1016/j.psyneuen.2016.07.209
  73. Bergman O, Ben-Shachar D. Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: Possible interactions with cellular processes. Can J Psychiatry. 2016;61(8):457–469. doi:10.1177/0706743716648290