Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker – 4.1)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2022, vol. 31, nr 8, August, p. 821–825

doi: 10.17219/acem/152350

Publication type: editorial

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:


Hepsomali P, Coxon C. Inflammation and diet: Focus on mental and cognitive health. Adv Clin Exp Med. 2022;31(8):821–825. doi:10.17219/acem/152350

Inflammation and diet: Focus on mental and cognitive health

Piril Hepsomali1,A,B,C,D,E,F, Christle Coxon1,A,B,C,D,E,F

1 School of Psychology, University of Roehampton, London, United Kingdom

Abstract

It has been well established that chronic low-grade inflammation is implicated in both physical and mental noncommunicable diseases. Diet, a leading risk factor for non-communicable diseases, has been repeatedly shown to be related to inflammation, as well as various health outcomes, including mental and cognitive health. In the current editorial paper, we briefly summarize the current state of evidence and discuss the potential mediating role of inflammation between diet and mental/cognitive health. We also outline our perspective on challenges and future research directions in the domain of inflammation and diet, with a specific focus on mental and cognitive health.

Key words: inflammation, diet, nutrition, mental health, cognitive health

 

Systemic chronic inflammation, diet and health

Chronic low-grade inflammation is implicated in the etiology of various noncommunicable diseases, including diabetes,1 obesity,2 cancer,3 and cardiovascular diseases,4 and even increased mortality.5, 6 Additionally, inflammation is also implicated in numerous mental disorders. For instance, meta-analytic and systematic reviews that focused on observational evidence have shown that a range of blood and cerebrospinal fluid pro-inflammatory markers such as interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-α), and C-reactive protein (CRP) were increased in a range of mental illnesses including depression, anxiety, schizophrenia, and bipolar disorder.7, 8, 9, 10, 11 Large cohort studies have also shown elevated CRP levels and white blood cell counts in depressive and anxiety disorders.12, 13, 14, 15, 16

In terms of cognitive health, evidence from cross-sectional and prospective studies indicate that peripheral inflammatory markers, such as IL-6 and CRP, are associated with the global cognitive decline,17, 18, 19, 20 and a decline in specific cognitive domains, particularly short-term memory,21, 22, 23 processing speed,24 verbal fluency, and executive function.25, 26, 27 For neurodegenerative conditions, meta-analyses of prospective studies have reported that higher levels of CRP and IL-6 are associated with a higher risk of all-cause dementia.28, 29, 30 While inflammation was not associated with an increased risk of Alzheimer’s disease (AD), evidence from cross-sectional studies indicates that peripheral markers of inflammation such as CRP, IL-1β, IL-6, and IL-8 are significantly higher in AD patients compared to controls.31, 32, 33 Elevated peripheral inflammatory markers such as monocyte chemoattractant protein-1 (MCP-1), IL-6 and IL-8 have been reported in mild cognitive impairment,33 but this finding is not consistent,31, 34 and it may be that systemic inflammation is similar to that of healthy individuals and occurs at a later stage in the progression of AD.35 Additionally, due to kynurenine pathway enzymes directly influencing inflammation and the immune system, kynurenic acid was shown to be lower in individuals with neurodegenerative conditions.36, 37

The aforementioned adverse physical, mental and cognitive health outcomes are also known to be associated with poor diet quality.38, 39, 40 Diet, a leading risk factor for noncommunicable diseases, affects disease risk via modulation of various mechanisms including, but not limited to, oxidative stress, plasticity, microbiota–gut–brain axis, and, most importantly, inflammatory responses.41, 42 Negative associations between adherence to a Mediterranean style diet (MED) and food groups that are abundant in these diets, such as fruits, vegetables, oily and non-oily fish, and inflammatory markers such as platelet and leukocyte counts, neutrophil to lymphocyte ratios (NLRs), and CRP43, 44, 45, 46, 47 levels have been observed. Intervention studies have also shown a similar pattern of results. For instance, results from meta-analyses of randomized controlled trials (RCTs) have provided evidence that a MED decreases inflammation, specifically CRP, IL-6 and IL-1β.48, 49

Based on the evidence discussed above, inflammation may mediate the association between anti-inflammatory diets, such as the MED, and health outcomes. In fact, a recent cross-sectional study found a role for various inflammatory biomarkers in the relationship between diet and sleep quality,45 though the role of inflammation on the relationship between diet and mental and cognitive health has not yet been examined. However, there is a considerable amount of cross-sectional evidence showing that the adherence to a MED or healthy dietary patterns, including higher intakes of fruit, vegetables, fish, and wholegrains, were associated with a reduced risk of depression (but not anxiety), age-related cognitive decline, pathological neurodegeneration, and better general mental well-being.50, 51, 52, 53, 54, 55 Additionally, the consumption of various nutrients (B vitamins, vitamin D, polyphenols, n-3 fatty acids, fiber) and certain food groups (fish/seafood, vegetables, fruits) were also shown to be associated with better mental and cognitive outcomes.51, 54, 56, 57, 58, 59, 60, 61 Similarly, based on recent reviews, a low number of heterogeneous dietary intervention studies have shown beneficial effects of the MED on symptoms of depression (but not anxiety) and cognitive decline.62, 63, 64 Though, to the best of our knowledge, none of these studies have tested the extent to which these benefits are due to changes in inflammation.

Challenges and future directions

The research briefly presented above, unfortunately, is not free from challenges. First and foremost, many of the studies are observational, and either cross-sectional or prospective in design, which limits our ability to infer a causal relationship between diet, inflammation, and physical, cognitive and mental health. Secondly, although various RCTs have been conducted in this area, they recruited small numbers of participants, and the heterogeneity of research methodology cannot be underestimated. Specifically, there is considerable variation in assessment of mental and cognitive health and dietary outcomes, and not all of the studies utilized consistent, validated and sensitive measures. Of specific importance, dietary intake measures are known to rely on the ability of participants to recall and report, and are prone to under­reporting.65 Furthermore, the definition of a specific dietary pattern differs across distinct geographical and cultural contexts.48 Third, the majority of the evidence in the area relies mainly on clinical samples and specific disorders (such as depression); however, research in subclinical samples and across a variety of psychopathological conditions is warranted. Fourth, most of the studies examined only a small subset of single measurements of inflammation biomarkers, and time of the blood draw was not taken into consideration. Indeed, while single measurements of various inflammatory biomarkers have been shown to predict a range of health outcomes,12, 66 it is also important to note that intraindividual variability in inflammatory biomarkers has been observed before,67 and some biomarkers show circadian rhythms.68 Fifth, one of the biggest challenges to the field is conducting interdisciplinary research to address the interactions between peripheral and brain alterations. Therefore, future research studies would benefit from combining multiple techniques and linking inflammation to the structure, function and connectivity of the brain, as well as to other biomarkers, such as neurometabolites, amyloid, tau, and α-synuclein, that are known to be sensitive to mental and cognitive health alterations. Moreover, there is no current consensus regarding the best diet that has anti-inflammatory potential, and, to the best of our knowledge, no trials have compared the efficacy of dietary interventions on mental and cognitive health outcomes to pharmacological and/or other nonpharmacological interventions. Finally, it is important to note that interpopulation differences in dietary patterns may result in markedly different inflammatory potential, as energy, nutrient intake and density differ greatly across populations.69

Based on the challenges and limitations discussed above, we invite researchers to conduct longitudinal studies that aim to clarify the temporal relationships between mental/cognitive health, inflammation and nutritional domains, in order to ascertain whether immune dysregulation is a precursor or the result of mental and cognitive health outcomes, or if it is a bidirectional pathway. We would also like to encourage researchers to conduct large RCTs: 1) by using consistent, validated, sensitive (and ideally objective) diet, mental and cognitive health measures; 2) in clinical and subclinical samples, across various psychopathological conditions; 3) by using wide range of inflammation biomarkers (measured at multiple time points to control for intraindividual variations); and 4) ideally by also utilising brain imaging and cerebrospinal fluid biomarkers, to identify the best anti-inflammatory diets, test the efficacy of these on mental and cognitive health outcomes, and test the efficacy of these in comparison to pharmacological and other nonpharmacological interventions. These interventions should, of course, control for various participant (such as sex,70 severity of health issues, body mass index (BMI), smoking, exercise, medical comorbidities,71 genetic heterogeneity, etc.) and sample (collection/processing/storage practices, time of the sample collection, etc.) characteristics. Filling the knowledge gaps discussed in this editorial will not only advance theoretical frameworks that characterize interactions between the gut and the brain, but also move fundamental research towards translational applications that could be used for disorders where inflammation is implicated.

References (71)

  1. Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol. 2019;14(1):50–59. doi:10.15420/ecr.2018.33.1
  2. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: The linking mechanism and the complications. Arch Med Sci. 2017;13(4):851–863. doi:10.5114/aoms.2016.58928
  3. Greten FR, Grivennikov SI. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41. doi:10.1016/j.immuni.2019.06.025
  4. Golia E, Limongelli G, Natale F, et al. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014;16(9):435. doi:10.1007/s11883-014-0435-z
  5. Proctor MJ, McMillan DC, Horgan PG, Fletcher CD, Talwar D, Morrison DS. Systemic inflammation predicts all-cause mortality: A Glasgow inflammation outcome study. PLoS One. 2015;10(3):e0116206. doi:10.1371/journal.pone.0116206
  6. Bonaccio M, Di Castelnuovo A, Pounis G, et al. A score of low-grade inflammation and risk of mortality: Prospective findings from the Moli-sani study. Haematologica. 2016;101(11):1434–1441. doi:10.3324/haematol.2016.144055
  7. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–1709. doi:10.1038/mp.2016.3
  8. Wang AK, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull. 2018;44(1):75–83. doi:10.1093/schbul/sbx035
  9. Fond G, Lançon C, Auquier P, Boyer L. C-reactive protein as a peripheral biomarker in schizophrenia: An updated systematic review. Front Psychiatry. 2018;9:392. doi:10.3389/fpsyt.2018.00392
  10. Costello H, Gould RL, Abrol E, Howard R. Systematic review and meta-analysis of the association between peripheral inflammatory cytokines and generalised anxiety disorder. BMJ Open. 2019;9(7):e027925. doi:10.1136/bmjopen-2018-027925
  11. Yuan N, Chen Y, Xia Y, Dai J, Liu C. Inflammation-related biomarkers in major psychiatric disorders: A cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. Transl Psychiatry. 2019;9(1):233. doi:10.1038/s41398-019-0570-y
  12. Wium-Andersen MK, Ørsted DD, Nielsen SF, Nordestgaard BG. Elevated C-reactive protein levels, psychological distress, and depression in 73 131 individuals. JAMA Psychiatry. 2013;70(2):176–184. doi:10.1001/2013.jamapsychiatry.102
  13. Kennedy E, Niedzwiedz CL. The association of anxiety and stress-related disorders with C-reactive protein (CRP) within UK Biobank. Brain Behav Immun Health. 2021;19:100410. doi:10.1016/j.bbih.2021.100410
  14. Meyer D, Chrusciel T, Salas J, Scherrer J. The relationship between white blood cell counts and mental health conditions in adults. Psychoneuroendocrinology. 2021;131:105500. doi:10.1016/j.psyneuen.2021.105500
  15. Ye Z, Kappelmann N, Moser S, et al. Role of inflammation in depression and anxiety: Tests for disorder specificity, linearity and potential causality of association in the UK Biobank. EClinicalMedicine. 2021;38:100992. doi:10.1016/j.eclinm.2021.100992
  16. Horsdal HT, Köhler-Forsberg O, Benros ME, Gasse C. C-reactive protein and white blood cell levels in schizophrenia, bipolar disorders and depression – associations with mortality and psychiatric outcomes: A population-based study. Eur Psychiatr. 2017;44:164–172. doi:10.1016/j.eurpsy.2017.04.012
  17. Bradburn S, Sarginson J, Murgatroyd CA. Association of peripheral interleukin-6 with global cognitive decline in non-demented adults: A meta-analysis of prospective studies. Front Aging Neurosci. 2018;9:438. doi:10.3389/fnagi.2017.00438
  18. West NA, Kullo IJ, Morris MC, Mosley TH. Sex-specific associations of inflammation markers with cognitive decline. Exp Gerontol. 2020;138:110986. doi:10.1016/j.exger.2020.110986
  19. Yang J, Fan C, Pan L, et al. C-reactive protein plays a marginal role in cognitive decline: A systematic review and meta-analysis. Int J Geriatr Psychiatry. 2015;30(2):156–165. doi:10.1002/gps.4236
  20. Sartori AC, Vance DE, Slater LZ, Crowe M. The impact of inflammation on cognitive function in older adults: Implications for healthcare practice and research. J Neurosci Nurs. 2012;44(4):206–217. doi:10.1097/JNN.0b013e3182527690
  21. Marsland AL, Gianaros PJ, Kuan DCH, Sheu LK, Krajina K, Manuck SB. Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain Behav Immun. 2015;48:195–204. doi:10.1016/j.bbi.2015.03.015
  22. Arce Rentería M, Gillett SR, McClure LA, et al. C-reactive protein and risk of cognitive decline: The REGARDS study. PLoS One. 2020;15(12):e0244612. doi:10.1371/journal.pone.0244612
  23. Noble JM, Manly JJ, Schupf N, Tang MX, Mayeux R, Luchsinger JA. Association of C-reactive protein with cognitive impairment. Arch Neurol. 2010;67(1):87–92. doi:10.1001/archneurol.2009.308
  24. Lin T, Liu GA, Perez E, et al. Systemic inflammation mediates age-related cognitive deficits. Front Aging Neurosci. 2018;10:236. doi:10.3389/fnagi.2018.00236
  25. Vintimilla R, Hall J, Johnson L, O’Bryant S. The relationship of CRP and cognition in cognitively normal older Mexican Americans: A cross-sectional study of the HABLE cohort. Medicine (Baltimore). 2019;98(19):e15605. doi:10.1097/MD.0000000000015605
  26. Schram MT, Euser SM, De Craen AJM, et al. Systemic markers of inflammation and cognitive decline in old age. J Am Geriatr Soc. 2007;55(5):708–716. doi:10.1111/j.1532-5415.2007.01159.x
  27. Kipinoinen T, Toppala S, Viitanen M, Rinne JO, Jula A, Ekblad LL. Chronic low‐grade inflammation predicts greater decline in verbal fluency and word‐list learning on 10 years’ follow‐up. Alzheimers Dement. 2021;17(S10). doi:10.1002/alz.055447
  28. Darweesh SKL, Wolters FJ, Ikram MA, Wolf F, Bos D, Hofman A. Inflammatory markers and the risk of dementia and Alzheimer’s disease: A meta‐analysis. Alzheimers Dement. 2018;14(11):1450–1459. doi:10.1016/j.jalz.2018.02.014
  29. Koyama A, O’Brien J, Weuve J, Blacker D, Metti AL, Yaffe K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. J Gerontol A Biol Sci Med Sci. 2013;68(4):433–440. doi:10.1093/gerona/gls187
  30. Metti AL, Cauley JA. How predictive of dementia are peripheral inflammatory markers in the elderly? Neurodegener Dis Manag. 2012;2(6):609–622. doi:10.2217/nmt.12.68
  31. Su C, Zhao K, Xia H, Xu Y. Peripheral inflammatory biomarkers in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Psychogeriatrics. 2019;19(4):300–309. doi:10.1111/psyg.12403
  32. Park JC, Han SH, Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer’s disease: A brief review. BMB Rep. 2020;53(1):10–19. doi:10.5483/BMBRep.2020.53.1.309
  33. Shen XN, Niu LD, Wang YJ, et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: A meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry. 2019;90(5):590–598. doi:10.1136/jnnp-2018-319148
  34. Saleem M, Herrmann N, Swardfager W, Eisen R, Lanctôt KL. Inflammatory markers in mild cognitive impairment: A meta-analysis. J Alzheimers Dis. 2015;47(3):669–679. doi:10.3233/JAD-150042
  35. Dursun E, Gezen-Ak D, Hanağası H, et al. The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol. 2015;283:50–57. doi:10.1016/j.jneuroim.2015.04.014
  36. Török N, Tanaka M, Vécsei L. Searching for peripheral biomarkers in neurodegenerative diseases: The tryptophan-kynurenine metabolic pathway. Int J Mol Sci. 2020;21(24):9338. doi:10.3390/ijms21249338
  37. Tanaka M, Vécsei L. Monitoring the kynurenine system: Concentrations, ratios or what else? Adv Clin Exp Med. 2021;30(8):775–778. doi:10.17219/acem/139572
  38. Ley SH, Pan A, Li Y, et al. Changes in overall diet quality and subsequent type 2 diabetes risk: Three U.S. prospective cohorts. Diabetes Care. 2016;39(11):2011–2018. doi:10.2337/dc16-0574
  39. Neelakantan N, Koh WP, Yuan JM, van Dam RM. Diet-quality indexes are associated with a lower risk of cardiovascular, respiratory, and all-cause mortality among Chinese adults. J Nutr. 2018;148(8):1323–1332. doi:10.1093/jn/nxy094
  40. Wolongevicz DM, Zhu L, Pencina MJ, et al. Diet quality and obesity in women: The Framingham Nutrition Studies. Br J Nutr. 2010;103(8):1223–1229. doi:10.1017/S0007114509992893
  41. Marx W, Moseley G, Berk M, Jacka F. Nutritional psychiatry: The present state of the evidence. Proc Nutr Soc. 2017;76(4):427–436. doi:10.1017/S0029665117002026
  42. Marx W, Lane M, Hockey M, et al. Diet and depression: Exploring the biological mechanisms of action. Mol Psychiatry. 2021;26(1):134–150. doi:10.1038/s41380-020-00925-x
  43. Bonaccio M, Di Castelnuovo A, De Curtis A, et al. Adherence to the Mediterranean diet is associated with lower platelet and leukocyte counts: Results from the Moli-sani study. Blood. 2014;123(19):3037–3044. doi:10.1182/blood-2013-12-541672
  44. Rodríguez-Rodríguez E, López-Sobaler AM, Ortega RM, Delgado-Losada ML, López-Parra AM, Aparicio A. Association between neutrophil-to-lymphocyte ratio with abdominal obesity and healthy eating index in a representative older Spanish population. Nutrients. 2020;12(3):855. doi:10.3390/nu12030855
  45. Hepsomali P, Groeger JA. Examining the role of systemic chronic inflammation in diet and sleep relationship. J Psychopharmacol. 2022;2022:026988112211129. doi:10.1177/02698811221112932
  46. Wu PY, Chen KM, Tsai WC. The Mediterranean dietary pattern and inflammation in older adults: A systematic review and meta-analysis. Adv Nutr. 2021;12(2):363–373. doi:10.1093/advances/nmaa116
  47. Whalen KA, McCullough ML, Flanders WD, Hartman TJ, Judd S, Bostick RM. Paleolithic and Mediterranean diet pattern scores are inversely associated with biomarkers of inflammation and oxidative balance in adults. J Nutr. 2016;146(6):1217–1226. doi:10.3945/jn.115.224048
  48. Schwingshackl L, Hoffmann G. Mediterranean dietary pattern, inflammation and endothelial function: A systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis. 2014;24(9):929–939. doi:10.1016/j.numecd.2014.03.003
  49. Koelman L, Egea Rodrigues C, Aleksandrova K. Effects of dietary patterns on biomarkers of inflammation and immune responses: A systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2022;13(1):101–115. doi:10.1093/advances/nmab086
  50. Angeloni C, Businaro R, Vauzour D. The role of diet in preventing and reducing cognitive decline. Curr Opin Psychiatry. 2020;33(4):432–438. doi:10.1097/YCO.0000000000000605
  51. Scarmeas N, Anastasiou CA, Yannakoulia M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018;17(11):1006–1015. doi:10.1016/S1474-4422(18)30338-7
  52. Lai JS, Hiles S, Bisquera A, Hure AJ, McEvoy M, Attia J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr. 2014;99(1):181–197. doi:10.3945/ajcn.113.069880
  53. Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann Neurol. 2013;74(4):580–591. doi:10.1002/ana.23944
  54. Hepsomali P, Groeger JA. Diet, sleep, and mental health: Insights from the UK biobank study. Nutrients. 2021;13(8):2573. doi:10.3390/nu13082573
  55. van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, van de Rest O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease: A review. Adv Nutr. 2019;10(6):1040–1065. doi:10.1093/advances/nmz054
  56. Li F, Liu X, Zhang D. Fish consumption and risk of depression: A meta-analysis. J Epidemiol Community Health. 2016;70(3):299–304. doi:10.1136/jech-2015-206278
  57. Liu X, Yan Y, Li F, Zhang D. Fruit and vegetable consumption and the risk of depression: A meta-analysis. Nutrition. 2016;32(3):296–302. doi:10.1016/j.nut.2015.09.009
  58. El Ansari W, Adetunji H, Oskrochi R. Food and mental health: Relationship between food and perceived stress and depressive symptoms among University students in the United Kingdom. Cent Eur J Public Health. 2014;22(2):90–97. doi:10.21101/cejph.a3941
  59. Miki T, Eguchi M, Kurotani K, et al. Dietary fiber intake and depressive symptoms in Japanese employees: The Furukawa Nutrition and Health Study. Nutrition. 2016;32(5):584–589. doi:10.1016/j.nut.2015.11.014
  60. Hepsomali P, Groeger JA. Diet and general cognitive ability in the UK Biobank dataset. Sci Rep. 2021;11(1):11786. doi:10.1038/s41598-021-91259-3
  61. Hepsomali P, Greyling A, Scholey A, Vauzour D. Acute effects of polyphenols on human attentional processes: A systematic review and meta-analysis. Front Neurosci. 2021;15:678769. doi:10.3389/fnins.2021.678769
  62. Firth J, Marx W, Dash S, et al. The effects of dietary improvement on symptoms of depression and anxiety: A meta-analysis of randomized controlled trials. Psychosom Med. 2019;81(3):265–280. doi:10.1097/PSY.0000000000000673
  63. Chen X, Maguire B, Brodaty H, O’Leary F. Dietary patterns and cognitive health in older adults: A systematic review. J Alzheimers Dis. 2019;67(2):583–619. doi:10.3233/JAD-180468
  64. Opie RS, O’Neil A, Itsiopoulos C, Jacka FN. The impact of whole-of-diet interventions on depression and anxiety: A systematic review of randomised controlled trials. Public Health Nutr. 2015;18(11):2074–2093. doi:10.1017/S1368980014002614
  65. Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health. 2014:e2014009. doi:10.4178/epih/e2014009
  66. Ruggiero C, Metter EJ, Cherubini A, et al. White blood cell count and mortality in the Baltimore longitudinal study of aging. J Am Coll Cardiol. 2007;49(18):1841–1850. doi:10.1016/j.jacc.2007.01.076
  67. deGoma EM, French B, Dunbar RL, Allison MA, Mohler ER, Budoff MJ. Intraindividual variability of C-reactive protein: The multi-ethnic study of atherosclerosis. Atherosclerosis. 2012;224(1):274–279. doi:10.1016/j.atherosclerosis.2012.07.017
  68. Lange T, Luebber F, Grasshoff H, Besedovsky L. The contribution of sleep to the neuroendocrine regulation of rhythms in human leukocyte traffic. Semin Immunopathol. 2022;44(2):239–254. doi:10.1007/s00281-021-00904-6
  69. Shivappa N, Wirth MD, Hurley TG, Hébert JR. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey-1999-2002. Mol Nutr Food Res. 2017;61(4):1600630. doi:10.1002/mnfr.201600630
  70. Grzymisławska M, Puch E, Zawada A, Grzymisławski M. Do nutritional behaviors depend on biological sex and cultural gender? Adv Clin Exp Med. 2020;29(1):165–172. doi:10.17219/acem/111817
  71. Carrera-González M del P, Cantón-Habas V, Rich-Ruiz M. Aging, depression and dementia: The inflammatory process. Adv Clin Exp Med. 2022;31(5):469–473. doi:10.17219/acem/149897