Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 166.39
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2022, vol. 31, nr 7, July, p. 769–780

doi: 10.17219/acem/147047

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Cite as:

Lin L, Chen D, Yu X, et al. The role and mechanism of TLR4-siRNA in the impairment of learning and memory in young mice induced by isoflurane. Adv Clin Exp Med. 2022;31(7):769–780. doi:10.17219/acem/147047

The role and mechanism of TLR4-siRNA in the impairment of learning and memory in young mice induced by isoflurane

Lin Lin1,A,B,C,D,F, Dongping Chen2,A,B,C,F, Xiaoli Yu3,A,B,C,F, Wensheng Zhong3,B,C,F, Yanlong Liu3,B,F, Yu Feng3,B,F, Heguo Luo3,A,C,E,F

1 Department of Stomatology, Jiangxi Provincial People’s Hospital, Nanchang, China

2 Department of General Surgery, Jiangxi Provincial People’s Hospital, Nanchang, China

3 Department of Anesthesiology, Jiangxi Provincial People’s Hospital, Nanchang, China


Background. Isoflurane can significantly induce inflammation in children without surgical stress. The toll-like receptor 4 (TLR4) is closely related to noninfectious inflammation in the brain.
Objectives. To investigate the role of TLR4-small interfering RNA (siRNA) in learning and memory impairment in young mice induced by isoflurane.
Material and Methods. The C57 newborn mice were randomly allocated into normal control (control), isoflurane anesthesia (isoflurane), TLR4 interference empty vector+isoflurane anesthesia (siRNA-NC), and TLR4 interference+isoflurane anesthesia (TLR-siRNA) groups. Their behavior and pathological condition were detected using Morris water maze and hematoxylin and eosin (H&E) staining, respectively. The TLR4, brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate response element-binding protein 1 (CREB1) mRNA expressions were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Serum tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 were detected by means of the enzyme-linked immunosorbent assay (ELISA). Apoptosis rate was detected with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). The TLR4, TNF-α, IL-6, BDNF, CREB1, extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK) protein expressions were detected using western blot (WB).
Results. Compared with the control group, the number of times the mice crossed the platform, and the time spent at the circumjacent area I and II of the platform were significantly decreased in the isoflurane group; the TLR4, TNF-α and IL-6 expressions were significantly increased in the isoflurane group, as compared to control; the results were reversed after the TLR4 interference. The hippocampal neurons in the isoflurane and siRNA-NC groups showed arrangement disorder and a high number of inflammatory infiltrates, while in the TLR-siRNA group they were closely and orderly arranged. Compared with the control group, the apoptosis rate and JNK protein expression in the isoflurane group were significantly increased, CREB1 protein expression was significantly decreased, and BDNF and ERK1/2 protein expressions showed no significant changes. Compared with the isoflurane group, the apoptosis rate of the TLR-siRNA group was significantly decreased, BDNF and CREB1 protein expressions were significantly increased, and ERK1/2 and JNK did not change significantly.
Conclusion. Isoflurane stimulates the overexpression of inflammatory response factors, playing an important role in the cognitive impairment process. As a mediator of the innate immune inflammatory response, TLR4 plays an important role in the process of cell injury, which may be delayed by blocking the TLR4 signal.

Key words

TLR4, isoflurane, memory function

References (44)

  1. Hu D, Flick RP, Zaccariello MJ, et al. Association between exposure of young children to procedures requiring general anesthesia and learning and behavioral outcomes in a population-based birth cohort. Anesthesiology. 2017;127(2):227–240. doi:10.1097/ALN.0000000000001735
  2. Block RI, Thomas JJ, Bayman EO, Choi JY, Kimble KK, Todd MM. Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology. 2012;117(3):494–503. doi:10.1097/ALN.0b013e3182644684
  3. Ing CH, DiMaggio CJ, Whitehouse AJ, et al. Neurodevelopmental outcomes after initial childhood anesthetic exposure between ages 3 and 10 years. J Neurosurg Anesthesiol. 2014;26(4):377–386. doi:10.1097/ANA.0000000000000121
  4. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–882. doi:10.1523/JNEUROSCI.23-03-00876.2003
  5. Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V. Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience. 2005;135(3):815–827. doi:10.1016/j.neuroscience.2005.03.064
  6. Ma D, Williamson P, Januszewski A, et al. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology. 2007;106(4):746–753. doi:10.1097/01.anes.0000264762.48920.80
  7. Shen X, Dong Y, Xu Z, et al. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology. 2013;118(3):502–515. doi:10.1097/ALN.0b013e3182834d77
  8. Saxena S, Maze M. Impact on the brain of the inflammatory response to surgery. Presse Med. 2018;47(4 Pt 2):e73–e81. doi:10.1016/j.lpm.2018.03.011
  9. Whitaker EE, Christofi FL, Quinn KM, et al. Selective induction of IL-1β after a brief isoflurane anesthetic in children undergoing MRI examination. J Anesth. 2017;31(2):219–224. doi:10.1007/s00540-016-2294-y
  10. de Voogd LD, Murray YPJ, Barte RM, et al. The role of hippocampal spatial representations in contextualization and generalization of fear. Neuroimage. 2020;206:116308. doi:10.1016/j.neuroimage.2019.116308
  11. Battaglia S, Garofalo S, di Pellegrino G, Starita F. Revaluing the role of vmPFC in the acquisition of Pavlovian threat conditioning in humans. J Neurosci. 2020;40(44):8491–8500. doi:10.1523/JNEUROSCI.0304-20.2020
  12. Battaglia S, Harrison BJ, Fullana MA. Does the human ventromedial prefrontal cortex support fear learning, fear extinction or both? A commentary on subregional contributions. Mol Psychiatry. 2021. doi:10.1038/s41380-021-01326-4
  13. Borgomaneri S, Serio G, Battaglia S. Please, don’t do it! Fifteen years of progress of non-invasive brain stimulation in action inhibition. Cortex. 2020;132:404–422. doi:10.1016/j.cortex.2020.09.002
  14. Anderson MC, Bunce JG, Barbas H. Prefrontal-hippocampal pathways underlying inhibitory control over memory. Neurobiol Learn Mem. 2016;134(Pt A):145–161. doi:10.1016/j.nlm.2015.11.008
  15. Wang W, Chen X, Zhang J, et al. Glycyrrhizin attenuates isoflurane-induced cognitive deficits in neonatal rats via its anti-inflammatory activity. Neuroscience. 2016;316:328–336. doi:10.1016/j.neuroscience.2015.11.001
  16. Si J, Jin Y, Cui M, Yao Q, Li R, Li X. Neuroprotective effect of miR-212-5p on isoflurane-induced cognitive dysfunction by inhibiting neuroinflammation. Toxicol Mech Methods. 2021;31(7):501–506. doi:10.1080/15376516.2021.1919948
  17. Eifinger F, Hünseler C, Roth B, et al. Observations on the effects of inhaled isoflurane in long-term sedation of critically ill children using a modified AnaConDa©-system. Klin Padiatr. 2013;225(4):206–211. doi:10.1055/s-0033-1345173
  18. Yi X, Cai Y, Li W. Isoflurane damages the developing brain of mice and induces subsequent learning and memory deficits through FASL-FAS signaling. Biomed Res Int. 2015;2015:315872. doi:10.1155/2015/315872
  19. Talpos JC, Chelonis JJ, Li M, Hanig JP, Paule MG. Early life exposure to extended general anesthesia with isoflurane and nitrous oxide reduces responsivity on a cognitive test battery in the nonhuman primate. Neurotoxicology. 2019;70:80–90. doi:10.1016/j.neuro.2018.11.005
  20. Zhu C, Gao J, Karlsson N, et al. Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J Cereb Blood Flow Metab. 2010;30(5):1017–1030. doi:10.1038/jcbfm.2009.274
  21. Schaefer ML, Wang M, Perez PJ, Coca Peralta W, Xu J, Johns RA. Nitric oxide donor prevents neonatal isoflurane-induced impairments in synaptic plasticity and memory. Anesthesiology. 2019;130(2):247–262. doi:10.1097/ALN.0000000000002529
  22. Kang E, Jiang D, Ryu YK, et al. Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway. PLoS Biol. 2017;15(7):e2001246. doi:10.1371/journal.pbio.2001246. Erratum in: PLoS Biol. 2018;16(3):e1002625. doi:10.1371/journal.pbio.1002625
  23. Bachour Y, Ritt MJPF, Heijmans R, Niessen FB, Verweij SP. Toll-like receptors (TLRs) expression in contracted capsules compared to uncontracted capsules. Aesthetic Plast Surg. 2019;43(4):910–917. doi:10.1007/s00266-019-01368-8
  24. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation. 2007;115(12):1599–1608. doi:10.1161/CIRCULATIONAHA.106.603431
  25. Hua F, Ma J, Ha T, et al. Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Res. 2009;1262:100–108. doi:10.1016/j.brainres.2009.01.018
  26. Walter S, Letiembre M, Liu Y, et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem. 2007;20(6):947–956. doi:10.1159/000110455
  27. Battaglia S, Garofalo S, di Pellegrino G. Context-dependent extinction of threat memories: Influences of healthy aging. Sci Rep. 2018;8(1):12592. doi:10.1038/s41598-018-31000-9
  28. Török N, Tanaka M, Vécsei L. Searching for peripheral biomarkers in neurodegenerative diseases: The tryptophan-kynurenine metabolic pathway. Int J Mol Sci. 2020;21(24):9338. doi:10.3390/ijms21249338
  29. Tanaka M, Toldi J, Vécsei L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int J Mol Sci. 2020;21(7):2431. doi:10.3390/ijms21072431
  30. Ising C, Heneka MT. Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death Dis. 2018;9(2):120. doi:10.1038/s41419-017-0153-x
  31. Zhou X, Wu Q, Lu Y, et al. Crosstalk between soluble PDGF-BB and PDGFRβ promotes astrocytic activation and synaptic recovery in the hippocampus after subarachnoid hemorrhage. FASEB J. 2019;33(8):9588–9601. doi:10.1096/fj.201900195R
  32. Sen T, Sen N. Isoflurane-induced inactivation of CREB through histone deacetylase 4 is responsible for cognitive impairment in developing brain. Neurobiol Dis. 2016;96:12–21. doi:10.1016/j.nbd.2016.08.005
  33. Cheng B, Zhang Y, Wang A, Dong Y, Xie Z. Vitamin C attenuates isoflurane-induced caspase-3 activation and cognitive impairment. Mol Neurobiol. 2015;52(3):1580–1589. doi:10.1007/s12035-014-8959-3
  34. Jevtovic-Todorovic V. Anesthesia and the developing brain: Are we getting closer to understanding the truth? Curr Opin Anaesthesiol. 2011;24(4):395–399. doi:10.1097/ACO.0b013e3283487247
  35. Sanchez V, Feinstein SD, Lunardi N, et al. General anesthesia causes long-term impairment of mitochondrial morphogenesis and synaptic transmission in developing rat brain. Anesthesiology. 2011;115(5):992–1002. doi:10.1097/ALN.0b013e3182303a63
  36. Buchanan MM, Hutchinson M, Watkins LR, Yin H. Toll-like receptor 4 in CNS pathologies. J Neurochem. 2010;114(1):13–27. doi:10.1111/j.1471-4159.2010.06736.x
  37. Gong CY, Zhou AL, Mao JH, Hu YE, Geng JS. The role of Toll-like receptor 4 on inflammation and Aβ formation in cortex astrocytes. Sheng Li Xue Bao. 2014;66(6):631–638. PMID:25516511.
  38. Trotta T, Porro C, Calvello R, Panaro MA. Biological role of Toll-like receptor-4 in the brain. J Neuroimmunol. 2014;268(1–2):1–12. doi:10.1016/j.jneuroim.2014.01.014
  39. Hua F, Ma J, Ha T, et al. Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol. 2007;190(1–2):101–111. doi: 10.1016/j.jneuroim.2007.08.014.
  40. Jou I, Lee JH, Park SY, Yoon HJ, Joe EH, Park EJ. Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am J Pathol. 2006;168(5):1619–1630. doi:10.2353/ajpath.2006.050924
  41. Lissoni P, Messina G, Pelizzoni F, et al. The fascination of cytokine immunological science. J Infectiology. 2020;3(1):14–28. doi:10.29245/2689-9981/2020/1.1155
  42. Harry GJ, Kraft AD. Neuroinflammation and microglia: Considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol. 2008;4(10):1265–1277. doi:10.1517/17425255.4.10.1265
  43. Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, et al. Microglia: Agents of the CNS pro-inflammatory response. Cells. 2020;9(7):1717. doi:10.3390/cells9071717
  44. Lin XW, Xu WC, Luo JG, et al. WW domain containing E3 ubiquitin protein ligase 1 (WWP1) negatively regulates TLR4-mediated TNF-α and IL-6 production by proteasomal degradation of TNF receptor associated factor 6 (TRAF6). PLoS One. 2013;8(6):e67633. doi:10.1371/journal.pone.0067633