Advances in Clinical and Experimental Medicine
2020, vol. 29, nr 8, August, p. 949–957
doi: 10.17219/acem/123622
Publication type: original article
Language: English
License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Download citation:
The effect of 3-bromopyruvate on the properties of cathepsin B in the aspect of metastatic potential of colon cancer cells
1 Department of Medical Biochemistry, Wroclaw Medical University, Poland
Abstract
Background. Cathepsin B (CTSB, EC 3.4.22.1) is a protease that physiologically resides in lysosomes and whose biosynthesis, cell surface location, intracellular distribution, and enzymatic activity undergo changes during the pathogenesis of cancer; it plays an important role in metastasis. Due to its active center structure, it is theoretically susceptible to the action of 3-bromopyruvate – an analogue of pyruvic acid and an alkylator that has been studied in depth in recent years for its anti-cancer activity, mainly through the inhibition of glycolytic enzymes.
Objectives. To investigate the effects of 3-bromopyruvate on the tumor cell properties in selected colorectal carcinoma cell lines that are widely attributed to the dysregulation of CTSB. Moreover, the effect of direct action of 3-bromopyruvate on the CTSB molecule was investigated in vitro.
Material and Methods. The research on the effect of 3-bromopyruvate on Caco-2/HCT 116 cells and purified human CTSB included a scratch/wound healing assay, a cell invasion assay, spectrofluorimetric measurements of enzymatic activity of cathepsin B, indirect immunofluorescence and flow cytometry, zymography, and liquid chromatography/mass spectrometry methods.
Results. 3-bromopyruvate reduced the activity and secretion of active CTSB and lowered the motility and invasiveness of Caco-2/HCT 116 human colorectal cancer cells. It decreased the exposure of CTSB on the outer surface of the cell membrane in both cell lines. 3-bromopyruvate inhibited the activity of CTSB reversibly and did not alkylate the molecule of the enzyme.
Conclusion. This is the first report on the effect of 3-bromopyruvate directly on CTSB and indirectly on the mechanisms leading to its distinct pathophysiological properties, resulting in increased metastatic potential of cancer cells, among others. Although detailed mechanisms of the interaction between 3-bromopyruvate and the active site of CTSB require further research, the results provide a new perspective from which to study the antitumor effect of 3-bromopyruvate.
Key words
cathepsin B, protease inhibitor, 3-bromopyruvate, Caco-2 cells, HCT 116 cells
References (37)
- Turk V, Turk B, Turk D. Lysosomal cysteine proteases: Facts and opportunities. EMBO J. 2001;20(17):4629–4633. doi:10.1093/emboj/20.17.4629
- Gondi CS, Rao JS. Cathepsin B as a cancer target. Expert Opin Ther Targets. 2013;17(3):281–291. doi:10.1517/14728222.2013.740461
- Mohamed MM, Sloane BF. Cysteine cathepsins: Multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–775. doi:10.1038/nrc1949
- Koblinski JE, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta. 2000;291(2):113–135. doi:10.1016/S0009-8981(99)00224-7
- Kostoulas G, Lang A, Nagase H, Baici A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett. 1999;455(3):286–290. doi:10.1016/S0014-5793(99)00897-2
- Musil D, Zucic D, Turk D, et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: The structural basis for its specificity. EMBO J. 1991;10(9):2321–2330.
- Aggarwal N, Sloane BF. Cathepsin B: Multiple roles in cancer. Proteomics Clin Appl. 2014;8(5–6):427–437. doi:10.1002/prca.201300105
- Ii K, Ito H, Kominami E, Hirano A. Abnormal distribution of cathepsin proteinases and endogenous inhibitors (cystatins) in the hippocampus of patients with Alzheimer’s disease, parkinsonism-dementia complex on Guam, and senile dementia and in the aged. Virchows Arch A Pathol Anat Histopathol. 1993;423(3):185–194. doi:10.1007/BF01614769
- Nagai A, Murakawa Y, Terashima M, et al. Cystatin C and cathepsin B in CSF from patients with inflammatory neurologic diseases. Neurology. 2000;55(12):1828–1832. doi:10.1212/WNL.55.12.1828
- Mitrović A, Mirković B, Sosič I, Gobec S, Kos J. Inhibition of endopeptidase and exopeptidase activity of cathepsin B impairs extracellular matrix degradation and tumour invasion. Biol Chem. 2016;397(2):165–174. doi:10.1515/hsz-2015-0236
- Abdulla MH, Valli-Mohammed MA, Al-Khayal K, et al. Cathepsin B expression in colorectal cancer in a Middle East population: Potential value as a tumor biomarker for late disease stages. Oncol Rep. 2017. doi:10.3892/or.2017.5576
- Bian B, Mongrain S, Cagnol S, et al. Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Mol Carcinog. 2016;55(5):671–687. doi:10.1002/mc.22312
- Hazen LGM, Bleeker FE, Lauritzen B, et al. Comparative localization of cathepsin B protein and activity in colorectal cancer. J Histochem Cytochem. 2000;48(10):1421–1430. doi:10.1177/002215540004801012
- Campo E, Muñoz J, Miquel R, et al. Cathepsin B expression in colorectal carcinomas correlates with tumor progression and shortened patient survival. Am J Pathol. 1994;145(2):301–309.
- Hirano T, Manabe T, Takeuchi S. Serum cathepsin B levels and urinary excretion of cathepsin B in the cancer patients with remote metastasis. Cancer Lett. 1993;70(1):41–44. doi:10.1016/0304-3835(93)90072-H
- Hirai K, Yokoyama M, Asano G, Tanaka S. Expression of cathepsin B and cystatin C in human colorectal cancer. Hum Pathol. 1999;30(6):680–686. doi:10.1016/S0046-8177(99)90094-1
- Van Noorden CJF, Jonges TGN, Van Marle J, et al. Heterogeneous suppression of experimentally induced colon cancer metastasis in rat liver lobes by inhibition of extracellular cathepsin B. Clin Exp Metastasis. 1998;16(2):159–167. doi:10.1023/A:1006524321335
- Frlan R, Gobec S. Inhibitors of cathepsin B. Curr Med Chem. 2006;13(19):2309–2327. doi:10.2174/092986706777935122
- Birsoy K, Wang T, Possemato R, et al. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet. 2013;45(1):104–108. doi:10.1038/ng.2471
- Cardaci S, Desideri E, Ciriolo MR. Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug. J Bioenerg Biomembr. 2012;44(1):17–29. doi:10.1007/s10863-012-9422-7
- Shoshan MC. 3-bromopyruvate: Targets and outcomes. J Bioenerg Biomembr. 2012;44(1):7–15. doi:10.1007/s10863-012-9419-2
- El Sayed SM, Mohamed WG, Hassan Seddik MA, et al. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: A concise literature review and case study. Chin J Cancer. 2014;33(7):356–364. doi:10.5732/cjc.013.10111
- Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL. A translational study “case report” on the small molecule “energy mblocker” 3-bromopyruvate (3BP) as a potent anticancer agent: From bench side to bedside. J Bioenerg Biomembr. 2012;44(1):163–170. doi:10.1007/s10863-012-9417-4
- Hulkower KI, Butler CC, Linebaugh BE, et al. Fluorescent microplate assay for cancer cell-associated cathepsin B. Eur J Biochem. 2000;267(13):4165–4170. doi:10.1046/j.1432-1327.2000.01458.x
- Barrett AJ. Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates. Biochem J. 1980;187(3):909–912. doi:10.1042/bj1870909
- Klose A, Zigrino P, Dennhöfer R, Mauch C, Hunzelmann N. Identification and discrimination of extracellularly active cathepsins B and L in high-invasive melanoma cells. Anal Biochem. 2006;353(1):57–62. doi:10.1016/j.ab.2006.01.037
- Lea MA, Qureshi MS, Buxhoeveden M, Gengel N, Kleinschmit J, Desbordes C. Regulation of the proliferation of colon cancer cells by compounds that affect glycolysis, including 3-bromopyruvate, 2-deoxyglucose and biguanides. Anticancer Res. 2013;33(2):401–407.
- Cavallo-Medved D, Rudy D, Blum G, Bogyo M, Caglic D, Sloane BF. Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Exp Cell Res. 2009;315(7):1234–1246. doi:10.1016/j.yexcr.2009.01.021
- Glick M, Biddle P, Jantzi J, Weaver S, Schirch D. The antitumor agent 3-bromopyruvate has a short half-life at physiological conditions. Biochem Biophys Res Commun. 2014;452(1):170–173. doi:10.1016/j.bbrc.2014.08.066
- Ho N, Morrison J, Silva A, Coomber BL. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci Rep. 2016;36(1):e00299. doi:10.1042/BSR20150267
- Kim AD, Zhang R, Han X, et al. Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues. Mol Med Rep. 2015;12(3):4314–4319.. doi:10.3892/mmr.2015.3902
- Qin JZ, Xin H, Nickoloff BJ. 3-bromopyruvate induces necrotic cell death in sensitive melanoma cell lines. Biochem Biophys Res Commun. 2010;396(2):495–500. doi:10.1016/j.bbrc.2010.04.126
- Kim JS, Ahn KJ, Kim JA, et al. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: RROS-mediated cell death by 3-BrPA. J Bioenerg Biomembr. 2008;40(6):607–618. doi:10.1007/s10863-008-9188-0
- El Sayed SM, El-Magd RMA, Shishido Y, et al. 3-bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects. J Bioenerg Biomembr. 2012;44(1):61–79. doi:10.1007/s10863-012-9409-4
- Xu DQ, Tan XY, Zhang BW, et al. 3-bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma. Tumor Biol. 2016;37(3):3543–3548. doi:10.1007/s13277-015-3884-2
- Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. Suppressive effects of 3-bromopyruvate on the proliferation and the motility of hepatocellular carcinoma cells. Oncol Rep. 2016;35(1):59–63. doi:10.3892/or.2015.4370
- Kędzior M, Seredyński R, Godzik U, et al. Inhibition of cathepsin B activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Sci Pollut Res. 2015;22(1):721–732. doi:10.1007/s11356-014-3482-7