Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 8, August, p. 1011–1016

doi: 10.17219/acem/124437

Publication type: review article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Methods for assessing the severity of perinatal asphyxia and early prognostic tools in neonates with hypoxic–ischemic encephalopathy treated with therapeutic hypothermia

Wojciech Walas1,A,B,C,D,E,F, Maria Wilińska2,A,B,F, Monika Bekiesińska-Figatowska3,A,B,F, Zenon Halaba4,A,B,F, Robert Śmigiel5,A,B,E,F

1 Pediatric and Neonatal Intensive Care Unit, University Hospital in Opole, Poland

2 Department of Neonatology, Centre of Postgraduate Medical Education, Warszawa, Poland

3 Department of Diagnostic Imaging, Institute of Mother and Child, Warszawa, Poland

4 Department of Pediatrics, Institute of Medical Sciences, University of Opole, Poland

5 Department of Pediatrics, Division of Propaedeutic Pediatrics and Rare Disorders, Wroclaw Medical University, Poland


Despite the progress in perinatal care, perinatal asphyxia (PA) remains a significant problem in neonatology. The development of therapeutic hypothermia (TH) has improved the prognosis, but it still remains uncertain in hypoxic neonates. The evaluation of the severity of ischemia/hypoxia after birth is crucial to the choice of treatment, and with accurate long-term prognosis, appropriate further patient care can be planned. This article presents various methods for the preliminary assessment of brain damage and prognosis in newborns with PA treated with TH. The importance of assessing the neurological condition and the usefulness of laboratory and electrophysiological testing and imaging are discussed. New methods are also noted, which are at the stage of clinical trials. A combination of the prognostic tests presented in this article can provide greater prognostic accuracy for predicting long-term neurological outcomes in infants with hypoxic–ischemic encephalopathy (HIE) undergoing TH than either of these tests independently. Acknowledging the limitations of individual tools in certain clinical situations and the integration of the information available from multiple biomarkers may help improve the accuracy of prognostication.

Key words

perinatal asphyxia, neonate, prediction factors, therapeutic hypothermia, hypoxic–ischemic encephalopathy

References (62)

  1. Graham EM, Ruis KA, Hartman AL, Northington FJ, Fox HE. A systematic review of the role of intrapartum hypoxia–ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol. 2008;199(6):587–595.
  2. World Health Organization. Global Health Observatory (GHO); WHO 2016. Accessed April 10, 2020.
  3. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic–ischaemic encephalopathy. Cochrane Syst Rev. 2013;2013(1):CD003311.
  4. Wyllie J, Bruinenberg J, Roehr CC, Rüdiger M, Trevisanuto D, Urlesberger B. European Resuscitation Council Guidelines for Resuscitation 2015. Section 7. Resuscitation and support of transition of babies at birth. Resuscitation. 2015;95:249–263.
  5. Laptook AR, Shankaran S, Ambalavanan N, et al; Hypothermia Subcommittee of the NICHD Neonatal Research Network. Outcome of term infants using Apgar scores at 10 minutes following hypoxic–ischemic encephalopathy. Pediatrics. 2009;124(6):1619–1626.
  6. Shah P, Anvekar A, McMichael J, Rao S. Outcomes of infants with Apgar score of zero at 10 min: The West Australian experience. Arch Dis Child Fetal Neonatal Ed. 2015;100(6):492–494.
  7. Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress: A clinical and encephalographic study. Arch Neurol. 1976;33(10):696–705.
  8. Grass B, Scheidegger S, Latal B, Hagmann C, Held U, Brotschi B; National Asphyxia and Cooling Register Group; Follow-up Group. Short-term neurological improvement in neonates with hypoxic–ischemic encephalopathy predicts neurodevelopmental outcome at 18–24 months. J Perinat Med. 2020;48(3):296–303.
  9. Thompson CM, Puterman AS, Linley LL, et al. The value of a scoring system for hypoxic–ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr. 1997;86(7):757–761.
  10. Mendler MR, Mendler I, Hassan MA, Mayer B, Bode H, Hummler HD. Predictive value of Thompson score for long-term neurological and cognitive outcome in term newborns with perinatal asphyxia and hypoxic–ischemic encephalopathy undergoing controlled hypothermia treatment. Neonatology. 2018;114(4):341–347.
  11. Wayock CP, Meserole RL, Saria S, et al. Perinatal risk factors for severe injury in neonates treated with whole-body hypothermia for ence­phalopathy. Am J Obstet Gynecol. 2014;211(1):41.e1–41.e8.
  12. Chiang MC, Lien R, Chu SM, et al. Serum lactate, brain magnetic resonance imaging and outcome of neonatal hypoxic–ischemic encephalopathy after therapeutic hypothermia. Pediatr Neonatol. 2016;57(1):35–40.
  13. Malin GL, Morris RK, Khan KS. Strength of association between umbilical cord pH and perinatal and long term outcomes: Systematic review and meta-analysis. BMJ. 2010;340:c1471.
  14. Muniraman H, Gardner D, Skinner J, et al. Biomarkers of hepatic injury and function in neonatal hypoxic–ischemic encephalopathy and with therapeutic hypothermia. Eur J Pediatr. 2017;176(10):1295–1303.
  15. Montaldo P, Rosso R, Chello G, Giliberti P. Cardiac troponin I concentrations as a marker of neurodevelopmental outcome at 18 months in newborns with perinatal asphyxia. J Perinatol. 2014;34(4):292–295.
  16. Hong F, Song L, Zhu YY, Ji JH, Zhu MJ, Xu M. Cardiac troponin I, myoglobin, and creatine kinase-Mb as new biomarkers for diagnosis of neonatal hypoxic–ischemic encephalopathy. J Biol Regul Homeost Agents. 2019;33(4):1201–1207.
  17. Yum SK, Moon CJ, Youn YA, Sung IK. Changes in lactate dehydrogenase are associated with central gray matter lesions in newborns with hypoxic–ischemic encephalopathy. J Matern Fetal Neonatal Med. 2017;30(10):1177–1181.
  18. Chaparro-Huerta V, Flores-Soto ME, Merin Sigala ME, et al. Proinflammatory cytokines, enolase and S-100 as early biochemical indicators of hypoxic–ischemic encephalopathy following perinatal asphyxia in newborns. Pediatr Neonatol. 2017;58(1):70–76.
  19. Roka A, Kelen D, Halasz J, Beko G, Azzopardi D, Szabo M. Serum S100B and neuron-specific enolase levels in normothermic and hypothermic infants after perinatal asphyxia. Acta Paediatr. 2012;101(3):319–323.
  20. Giuseppe D, Sergio C, Pasqua B, et al. Perinatal asphyxia in preterm neonates leads to serum changes in protein S-100 and neuron specific enolase. Curr Neurovasc Res. 2009;6(2):110–116.
  21. Massaro AN, Chang T, Baumgart S, McCarter R, Nelson KB, Glass P. Biomarkers S100B and neuron-specific enolase predict outcome in hypothermia-treated encephalopathic newborns. Pediatr Crit Care Med. 2014;15(7):615–622.
  22. Ennen CS, Huisman TA, Savage WJ, et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic–ischemic encephalopathy treated with whole-body cooling. Am J Obstet Gynecol. 2011;205(3):251.e1–e7.
  23. Florio P, Frigiola A, Battista R, et al. Activin A in asphyxiated full-term newborns with hypoxic–ischemic encephalopathy. Front Biosci (Elite Ed). 2010;2:36–42.
  24. Douglas-Escobar MV, Heaton SC, Bennett J, et al. UCH-L1 and GFAP serum levels in neonates with hypoxic–ischemic encephalopathy: A single center pilot study. Front Neurol. 2014;5:273.
  25. Lv HY, Wu SJ, Gu XL, et al. Predictive value of neurodevelopmental outcome and serum tau protein level in neonates with hypoxic–ischemic encephalopathy. Clin Lab. 2017;63(7):1153–1162.
  26. Shah DK, Ponnusamy V, Evanson J, et al. Raised plasma neurofilament light protein levels are associated with abnormal MRI outcomes in newborns undergoing therapeutic hypothermia. Front Neurol. 2018;9:86.
  27. Chalak LF, Sánchez PJ, Adams-Huet B, Laptook AR, Heyne RJ, Rosenfeld CR. Biomarkers for severity of neonatal hypoxic–ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr. 2014;164(3):468–474.
  28. Graham EM, Everett AD, Delpech JC, Northington FJ. Blood biomarkers for evaluation of perinatal encephalopathy: State of the art. Curr Opin Pediatr. 2018;30(2):199–203.
  29. Li Y, Dammer EB, Zhang-Brotzge X, et al. Osteopontin is a blood biomarker for microglial activation and brain injury in experimental hypoxic–ischemic encephalopathy. eNeuro. 2017;4(1):ENEURO.0253-16.2016. doi:10.1523/ENEURO.0253-16.2016
  30. Aly H, Hassanein S, Nada A, Mohamed MH, Atef SH, Atiea W. Vascular endothelial growth factor in neonates with perinatal asphyxia. Brain Dev. 2009;31(8):600–604.
  31. Hagag AA, El Frargy MS, Abd El-Latif AE. Study of cord blood erythropoietin, leptin and adiponectin levels in neonates with hypoxic–ischemic encephalopathy. Endocr Metab Immune Disord Drug Targets. 2020;20(2):213–220.
  32. Ahearne CE, Denihan NM, Walsh BH, et al. Early cord metabolite index and outcome in perinatal asphyxia and hypoxic–ischaemic encephalopathy. Neonatology. 2016;110(4):296–302.
  33. Denihan NM, Kirwan JA, Walsh BH, et al. Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic–ischaemic encephalopathy. J Cereb Blood Flow Metab. 2019;39(1):147–162.
  34. Liu JF, Wu HW, Li ZG, Lu GZ, Yang X. aEEG monitoring analysis of lesion degree and long-term prognosis in newborns with HIE. Eur Rev Med Pharmacol Sci. 2016;20(13):2863–2867.
  35. Sewell EK, Vezina G, Chang T, et al. Evolution of amplitude-integrated electroencephalogram as a predictor of outcome in term encephalopathic neonates receiving therapeutic hypothermia. Am J Perinatol. 2018;35(3):277–285.
  36. Goeral K, Urlesberger B, Giordano V, et al. Prediction of outcome in neonates with hypoxic–ischemic encephalopathy II: Role of amplitude-integrated electroencephalography and cerebral oxygen saturation measured by near-infrared spectroscopy. Neonatology. 2017;112(3):193–202.
  37. Skranes JH, Løhaugen G, Schumacher EM, et al. Amplitude-integrated electroencephalography improves the identification of infants with encephalopathy for therapeutic hypothermia and predicts neurodevelopmental outcomes at 2 years of age. J Pediatr. 2017;187:34–42.
  38. Del Río R, Ochoa C, Alarcon A, Arnáez J, Blanco D, García-Alix A. Amplitude integrated electroencephalogram as a prognostic tool in neonates with hypoxic–ischemic encephalopathy: A systematic review. PLoS One. 2016;11(11):e0165744.
  39. Chandrasekaran M, Chaban B, Montaldo P, Thayyil S. Predictive value of amplitude-integrated EEG (aEEG) after rescue hypothermic neuroprotection for hypoxic–ischemic encephalopathy: A meta-analysis. J Perinatol. 2017;37(6):684–689.
  40. Shah DK, Wusthoff CJ, Clarke P, et al. Electrographic seizures are associated with brain injury in newborns undergoing therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2014;99(3):219–224.
  41. Awal MA, Lai MM, Azemi G, Boashash B, Colditz PB. EEG background features that predict outcome in term neonates with hypoxic–ischaemic encephalopathy: A structured review. Clin Neurophysiol. 2016;127(1):285–296.
  42. Dunne JM, Wertheim D, Clarke P, et al. Automated electroencephalographic discontinuity in cooled newborns predicts cerebral MRI and neurodevelopmental outcome. Arch Dis Child Fetal Neonatal Ed. 2017;102(1):58–64.
  43. Weeke LC, Boylan GB, Pressler RM, et al. NEonatal seizure treatment with Medication Off-patent (NEMO) consortium. Role of EEG background activity, seizure burden and MRI in predicting neurodevelopmental outcome in full-term infants with hypoxic–ischaemic encephalopathy in the era of therapeutic hypothermia. Eur J Paediatr Neurol. 2016;20(6):855–864.
  44. Han Y, Fu N, Chen W, et al. Prognostic value of electroencephalography in hypothermia-treated neonates with hypoxic–ischemic ence­phalopathy: A meta-analysis. Pediatr Neurol. 2019;93:3–10.
  45. Liu W, Yang Q, Wei H, Dong W, Fan Y, Hua Z. Prognostic value of clinical tests in neonates with hypoxic–ischemic encephalopathy treated with therapeutic hypothermia: A systematic review and meta-analysis. Front Neurol. 2020;11:133.
  46. Suppiej A, Cappellari A, Talenti G, et al. Bilateral loss of cortical SEPs predicts severe MRI lesions in neonatal hypoxic–ischemic encephalopathy treated with hypothermia. Clin Neurophysiol. 2018;129(1):95–100.
  47. Cainelli E, Trevisanuto D, Cavallin F, Manara R, Suppiej A. Evoked potentials predict psychomotor development in neonates with normal MRI after hypothermia for hypoxic–ischemic encephalopathy. Clin Neurophysiol. 2018;129(6):1300–1306.
  48. Gerner GJ, Burton VJ, Poretti A, et al. Transfontanellar duplex brain ultrasonography resistive indices as a prognostic tool in neonatal hypoxic–ischemic encephalopathy before and after treatment with therapeutic hypothermia. J Perinatol. 2016;36(3):202–206.
  49. Annink KV, de Vries LS, Groenendaal F, et al. The development and validation of a cerebral ultrasound scoring system for infants with hypoxic–ischaemic encephalopathy. Pediatr Res. 2020;87(Suppl 1):59–66.
  50. Zhang Y, Zhang JL, Li Y. Computed tomography diagnosis of neonatal hypoxic–ischemic encephalopathy combined with intracranial hemorrhage and clinical nursing treatment. J Biol Regul Homeost Agents. 2016;30(2):511–515.
  51. Thayyil S, Chandrasekaran M, Taylor A, et al. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: A meta-analysis. Pediatrics. 2010;125(2):382–395.
  52. Lakatos A, Kolossváry M, Szabó M, et al. Neurodevelopmental effect of intracranial hemorrhage observed in hypoxic–ischemic brain injury in hypothermia-treated asphyxiated neonates: An MRI study. NCBINCBI Logo BMC Pediatr. 2019;19(1):430.
  53. Bekiesinska-Figatowska M, Duczkowska A, Szkudlinska-Pawlak S, et al. Diffusion restriction in the corticospinal tracts and the corpus callosum in neonates after cerebral insult. Brain Dev. 2017;39(3):203–210.
  54. Rana L, Sood D, Chauhan R, et al. MR imaging of hypoxic–ischemic encephalopathy: Distribution patterns and ADC value correlations. Eur J Radiol Open. 2018;5:215–220.
  55. Mitra S, Kendall GS, Bainbridge A, et al. Proton magnetic resonance spectroscopy lactate/N-acetylaspartate within 2 weeks of birth accurately predicts 2-year motor, cognitive and language outcomes in neonatal encephalopathy after therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2019;104(4):424–432.
  56. Lemmon ME, Wagner MW, Bosemani T, et al. Diffusion tensor imaging detects occult cerebellar injury in severe neonatal hypoxic–ischemic encephalopathy. Dev Neurosci. 2017;39(1–4):207–214.
  57. Trivedi SB, Vesoulis ZA, Rao R, et al. A validated clinical MRI injury scoring system in neonatal hypoxic–ischemic encephalopathy. Pediatr Radiol. 2017;47(11):1491–1499.
  58. Weeke LC, Groenendaal F, Mudigonda K, et al. A novel magnetic resonance imaging score predicts neurodevelopmental outcome after perinatal asphyxia and therapeutic hypothermia. J Pediatr. 2018;192:33–40.e2.
  59. Jain SV, Pagano L, Gillam-Krakauer M, Slaughter JC, Pruthi S, Engelhardt B. Cerebral regional oxygen saturation trends in infants with hypoxic–ischemic encephalopathy. Early Hum Dev. 2017;113:55–61.
  60. Kayton A, DeGrazia M, Sharpe E, Smith D, Perez JA, Weiss MD. Correlation between heart rate characteristic index score and severity of brain injury in neonates with hypoxic–ischemic encephalopathy. Adv Neonatal Care. 2020;20(4):E70–E82. doi:10.1097/ANC.0000000000000686
  61. Gonzaga e Silva ABC, Laszczyk J, Wrobel LC, Ribeiro FLC, Nowak AJ. A thermoregulation model for hypothermic treatment of neonates. Med Eng Phys. 2016;38(9):988–998.
  62. Mietzsch U, Radhakrishnan R, Boyle FA, Juul S, Wood TR. Active cooling temperature required to achieve therapeutic hypothermia correlates with short-term outcome in neonatal hypoxic–ischaemic ence­phalopathy. J Physiol. 2020;598(2):415–424.