Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.4)
Index Copernicus  – 161.11; MEiN – 140 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 7, July, p. 841–851

doi: 10.17219/acem/121063

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

A long-term follow-up study on biochemical and clinical biomarkers of response to interferon beta-1b treatment in relapsing-remitting multiple sclerosis

Anna Pietrzak1,A,B,C,D, Alicja Kalinowska-Łyszczarz2,C,D,E, Krystyna Osztynowicz2,B, Alima Khamidulla3,B, Wojciech Kozubski1,A,E,F, Sławomir Michalak2,A,C,E,F

1 Department of Neurology, Poznan University of Medical Sciences, Poland

2 Department of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences, Poland

3 Department of Neurology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan

Abstract

Background. While interferon beta-1b (IFN-β-1b) is still a commonly used disease-modifying drug in the treatment of multiple sclerosis (MS), therapeutic possibilities are expanding, and treatment failure should be identified early. Markers to predict response to IFN-β-1b, either clinical or biochemical, are therefore urgently needed. Interferon-induced proteins, including viperin, suppressor of cytokine signaling 3 (SOCS3), ubiquitin specific peptidase-18 (USP18), and myxovirus resistance protein A (MxA), are possible markers of IFN-β-1b bioavailability and treatment response.
Objectives. To evaluate viperin, SOCS3, USP18 and MxA as markers of treatment response in Polish IFN-β-1btreated patients with MS.
Material and Methods. In 45 IFN-β-1b-treated Polish patients with MS, serum concentrations of viperin, SOCS3, USP18, and MxA were assessed before and after 24 months of IFN-β-1b treatment. The patients were followed clinically and with magnetic resonance imaging (MRI) for a median of 6.8 years.
Results. Low viperin, USP18 and MxA at baseline and 24 months and high SOCS3 at 24 months correlated with higher disease activity up to the 6th year of observation, but only baseline MxA and USP18 were independently related to outcome, with higher concentrations predicting less disease activity in the first 3 years and after the 1st year, respectively.
Conclusion. We confirm the predictive value of MxA and propose USP18 as a possible new prognostic biomarker in IFN-β-1btreated MS patients.

Key words

multiple sclerosis, interferon beta, viperin, suppressor of cytokine signaling 3, ubiquitin specific peptidase 18

References (40)

  1. Dobson R, Giovannoni G. Multiple sclerosis: A review. Eur J Neurol. 2019;26(1):27–40. doi:10.1111/ene.13819
  2. Kappos L, De Stefano N, Freedman MS, et al. Inclusion of brain volume loss in a revised measure of “no evidence of disease activity” (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. 2016;22(10):1297–1305. doi:10.1177/1352458515616701
  3. Mayssam EN, Eid C, Khoury SJ, Hannoun S. “No evidence of disease activity”: Is it an aspirational therapeutic goal in multiple sclerosis? Mult Scler Relat Disord. 2020;40:101935. doi:10.1016/j.msard.2020.101935
  4. Freedman MS, Selchen D, Prat A, Giacomini PS. Managing multiple sclerosis: Treatment initiation, modification, and sequencing. Can J Neurol Sci. 2018;45(5):489–503. doi:10.1017/cjn.2018.17
  5. Río J, Castilló J, Rovira A, et al. Measures in the first year of therapy predict the response to interferon β in MS. Mult Scler. 2009;15(7):848–853. doi:10.1177/1352458509104591
  6. Sormani MP, Rio J, Tintorè M, et al. Scoring treatment response in patients with relapsing multiple sclerosis. Mult Scler J. 2013;19(5):605–612. doi:10.1177/1352458512460605
  7. Malhotra S, Bustamante MF, Miralles F, et al. Search for specific biomarkers of IFNβ bioactivity in patients with multiple sclerosis. PLoS One. 2011;6(8). doi:10.1371/journal.pone.0023634
  8. Malucchi S, Gilli F, Caldano M, et al. One-year evaluation of factors affecting the biological activity of interferon beta in multiple sclerosis patients. J Neurol. 2011;258(5):895–903. doi:10.1007/s00415-010-5844-5
  9. Malucchi S, Gilli F, Caldano M. Predictive markers for response to interferon therapy in patients with multiple sclerosis. Neurology. 2008;(70):1119–1127. doi:10.1212/01.wnl.0000304040.29080.7b
  10. Pachner AR, Warth JD, Pace A, Goelz S. Effect of neutralizing antibodies on biomarker responses to interferon beta: The INSIGHT study. Neuro­logy. 2009;73(18):1493–1500. doi:10.1212/WNL.0b013e3181bf98db
  11. Bărcuţean LI, Romaniuc A, Maier S, et al. Clinical and serological biomarkers of treatment’s response in multiple sclerosis patients treated continuously with interferon β-1b for more than a decade. CNS Neurol Disord Drug Targets. 2018;17(10):780–792. doi:10.2174/1871527317666180917095256
  12. Taheri M, Ghafouri-Fard S, Solgi G, Sayad A, Mazdeh M, Omrani MD. Determination of cytokine levels in multiple sclerosis patients and their relevance with patients’ response to Cinnovex. Cytokine. 2017;96:138–143. doi:10.1016/j.cyto.2017.04.007
  13. Balasa R, Maier S, Voidazan S, et al. Assessment of interleukin-17A, interleukin-10 and transforming growth factor-beta1 serum titers in relapsing remitting multiple sclerosis patients treated with avonex, possible biomarkers for treatment response. CNS Neurol Disord Drug Targets. 2017;16(1):93–101. doi:10.2174/1871527315666160615110739
  14. Manna I, Iaccino E, Dattilo V, et al. Exosome-associated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients. FASEB J. 2018;32(8):4241–4246. doi:10.1096/fj.201701533R
  15. Magner WJ, Weinstock-Guttman B, Rho M, et al. Dicer and microRNA expression in multiple sclerosis and response to interferon therapy. J Neuroimmunol. 2016;292:68–78. doi:10.1016/j.jneuroim.2016.01.009
  16. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi:10.1002/ana.22366
  17. TIBCO Software Inc. Statistica (data analysis software system), v. 13. Palo Alto, CA. http://statistica.io. Accessed November 15, 2017.
  18. MedCalc Software bvba. MedCalc statistical software. Ostend, Belgium. https://www.medcalc.org/. Accessed on May 13, 2017.
  19. Malakhova OA, Kim K Il, Luo JK, et al. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 2006;25(11):2358–2367. doi:10.1038/sj.emboj.7601149
  20. Malhotra S, Morcillo-Suárez C, Nurtdinov R, et al. Roles of the ubiquitin peptidase USP18 in multiple sclerosis and the response to interferon-β treatment. Eur J Neurol. 2013;20(10):1390–1397. doi:10.1111/ene.12193
  21. Martire S, Navone ND, Montarolo F, Perga S, Bertolotto A. A gene expression study denies the ability of 25 candidate biomarkers to predict the interferon-beta treatment response in multiple sclerosis patients. J Neuroimmunol. 2016;292:34–39. doi:10.1016/j.jneuroim.2016.01.010
  22. Gao Y, Zhao H, Wang P, Wang J, Zou L. The roles of SOCS3 and STAT3 in bacterial infection and inflammatory diseases. Scand J Immunol. 2018;88(6):e12727. doi:10.1111/sji.12727
  23. Mishra KK, Gupta S, Banerjee K. SOCS3 induces neurite differentiation and promotes neuronal cell survival. IUBMB Life. 2016;68(6):468–476. doi:10.1002/iub.1505
  24. Benveniste EN, Liu Y, McFarland BC, Qin H. Involvement of the Janus kinase/signal transducer and activator of transcription signaling pathway in multiple sclerosis and the animal model of experimental autoimmune encephalomyelitis. J Interf Cytokine Res. 2014;34(8):577–588. doi:10.1089/jir.2014.0012
  25. Tanaka K, Ichiyama K, Hashimoto M, et al. Loss of suppressor of cytokine signaling 1 in helper T cells leads to defective Th17 differentiation by enhancing antagonistic effects of IFN-gamma on STAT3 and Smads. J Immunol. 2008;180(6):3746–3756. doi:10.4049/JIMMUNOL.180.6.3746
  26. Frisullo G, Mirabella M, Angelucci F, et al. The effect of disease activity on leptin, leptin receptor and suppressor of cytokine signalling-3 expression in relapsing-remitting multiple sclerosis. J Neuroimmunol. 2007;192(1–2):174–183. doi:10.1016/j.jneuroim.2007.08.008
  27. Sedeño-Monge V, Arcega-Revilla R, Rojas-Morales E, et al. Quantitative analysis of the suppressors of cytokine signaling 1 and 3 in peripheral blood leukocytes of patients with multiple sclerosis. J Neuro­immunol. 2014;273(1–2):117–119. doi:10.1016/j.jneuroim.2014.05.013
  28. Toghi M, Taheri M, Arsang-Jang S, et al. SOCS gene family expression profile in the blood of multiple sclerosis patients. J Neurol Sci. 2017;375:481–485. doi:10.1016/j.jns.2017.02.015
  29. Chemudupati M, Kenney AD, Bonifati S, et al. From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. Biochim Biophys Acta Mol Cell Res. 2019;1866(3):382–394. doi:10.1016/j.bbamcr.2018.09.012
  30. Bertolotto A, Granieri L, Marnetto F, et al. Biological monitoring of IFN-β therapy in multiple sclerosis. Cytokine Growth Factor Rev. 2015;26(2):241–248. doi:10.1016/j.cytogfr.2014.12.002
  31. Hesse D, Sellebjerg F, Sorensen PS. Absence of MxA induction by interferon β in patients with MS reflects complete loss of bioactivity. Neuro­logy. 2009;73(5):372–377. doi:10.1212/WNL.0b013e3181b04c98
  32. Van Der Voort LF, Visser A, Knol DL, Oudejans CBM, Polman CH, Kille­stein J. Lack of interferon-beta bioactivity is associated with the occurrence of relapses in multiple sclerosis. Eur J Neurol. 2009;16(9):1049–1052. doi:10.1111/j.1468-1331.2009.02649.x
  33. Matas E, Bau L, Martínez-Iniesta M, Romero-Pinel L, Mañé-Martínez MA, Martínez-Yélamos S. Absence of MxA induction is related to a poor clinical response to interferon beta treatment in multiple sclerosis patients. J Neurol. 2016;263(4):722–729. doi:10.1007/s00415-016-8053-z
  34. Matas E, Bau L, Martínez-Iniesta M, et al. Baseline MxA mRNA expression predicts interferon beta response in multiple sclerosis patients. PLoS One. 2014;9(11):e112758. doi:10.1371/journal.pone.0112758
  35. Serana F, Imberti L, Amato MP, et al. MxA quantification and disability progression in interferon beta-treated multiple sclerosis patients. PLoS One. 2014;9(4):e94794. doi:10.1371/journal.pone.0094794
  36. Libertinova J, Meluzinova E, Tomek A, et al. Myxovirus resistance protein A mRNA expression kinetics in multiple sclerosis patients treated with IFNβ. PLoS One. 2017;12(1):e0169957. doi:10.1371/journal.pone.0169957
  37. Hegen H, Adrianto I, Lessard CJ, et al. Cytokine profiles show heterogeneity of interferon-β response in multiple sclerosis patients. Neurol Neuroimmunol NeuroInflamm. 2016;3(2):e202. doi:10.1212/NXI.0000000000000202
  38. Gilli F, Marnetto F, Caldano M, et al. Biological responsiveness to first injections of interferon-beta in patients with multiple sclerosis. J Neuroimmunol. 2005;158(1–2):195–203. doi:10.1016/j.jneuroim.2004.08.006
  39. Kracke A, von Wussow P, Al-Masri AN, Dalley G, Windhagen A, Heidenreich F. Mx proteins in blood leukocytes for monitoring interferon beta-1b therapy in patients with MS. Neurology. 2000;54(1):193–199. doi:10.1212/WNL.54.1.193
  40. Bertolotto A, Gilli F, Sala A, et al. Evaluation of bioavailability of three types of IFNβ in multiple sclerosis patients by a new quantitative-competitive-PCR method for MxA quantification. J Immunol Methods. 2001;256(1–2):141–152. doi:10.1016/S0022-1759(01)00434-3