Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 4, April, p. 431–440

doi: 10.17219/acem/116752

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Study of PLGA microspheres loaded with pOsx/PEI nanoparticles for repairing bone defects in vivo and in vitro

Jingtang Li1,B,C,D,F, Guanxiang Liao1,B,C,F, Zhisheng Long1,B,C,F, Peng Qiu1,B,F, Linghua Ding1,C,F, Long Xiong1,A,C,E,F

1 Department of Orthopedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, China


Background. Autogenous or allogenic bone transplantation is the main treatment for bone defects and nonunions. However, the shortcomings of autogenous or allogenic bone transplantation limit its wide application in clinical use.
Objectives. This study investigated the effect of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with pOsterix (pOsx)/polyethylenimine (PEI) nanoparticles in repairing bone defects and explored its mechanism.
Material and Methods. Poly(lactic-co-glycolic acid) microspheres loaded with pOsx/PEI nanoparticles were constructed. The Osx transfection effect was detected by fluorescence quantitative PCR and western blotting methods. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide (MTT) and flow cytometry methods were used to detect cell proliferation. The collagen I (Col-1), osteopontin (OPN) and osteocalcin (OC) expression levels were detected using real-time polymerase chain reaction (RT-PCR) and western blotting methods. Bone defect model was constructed. Bone repair was detected using X-ray, hematoxylin and eosin (H&E) staining, and Mason staining methods.
Results. PLGA@pOsx/PEI has transfection effect both in vitro and in vivo, does not affect cell proliferation and is safe for cells. PLGA@pOsx/PEI could promote the expression of Col-1, OPN and OC in vitro and in vivo. PLGA@pOsx/PEI could promote osteogenesis in vivo.
Conclusion. PLGA@pOsx/PEI with high Osx expression could promote the expression of OC, OPN, and COL-I. PLGA@pOsx/PEI can be used as a material for repairing bone defects and can promote bone formation. These results provide a theoretical and practical basis for its further clinical application.

Key words

bone defect, pOsx/PEI nanoparticles, PLGA microspheres

References (36)

  1. Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: Current concepts and future directions. BMC Med. 2011;9:66. doi:10.1186/1741-7015-9-66
  2. Athanasiou VT, Papachristou DJ, Panagopoulos A, et al. Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: An experimental study in rabbits. Med Sci Monit. 2010;16(1):BR24–BR31.
  3. Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H. 2010;224(12):1329–1343. doi:10.1243/09544119JEIM770
  4. Oryan A, Alidadi S, Moshiri A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. doi:10.1186/1749-799X-9-18
  5. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: Recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408.
  6. Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014. doi:10.1038/boneres.2017.14.
  7. Zhang Y, Ma W, Zhan Y, et al. Nucleic acids and analogs for bone regeneration. Bone Res. 2018;6:37. doi:10.1038/s41413-018-0042-7
  8. Yi H, Ur Rehman F, Zhao C, et al. Recent advances in nano scaffolds for bone repair. Bone Res. 2016;4:16050. doi:10.1038/boneres.2016.50
  9. Bhattacharjee P, Kundu B, Naskar D, et al. Silk scaffolds in bone tissue engineering: An overview. Acta Biomater. 2017;63:1–17. doi:10.1016/j.actbio.2017.09.027
  10. Wubneh A, Tsekoura EK, Ayranci C, et al. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018;80:1–30. doi:10.1016/j.actbio.2018.09.031
  11. Carreira AC, Lojudice FH, Halcsik E, et al. Bone morphogenetic proteins: Facts, challenges, and future perspectives. J Dent Res. 2014;93(4):335–345. doi:10.1177/0022034513518561
  12. Ronga M, Fagetti A, Canton G, et al. Clinical applications of growth factors in bone injuries: Experience with BMPs. Injury. 2013;44(Suppl1):S34–S39. doi:10.1016/S0020-1383(13)70008-1
  13. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.
  14. Liang GS, Chen WC, Yin CC, et al. Effect of total ravonoids of herba epimedium on BMP-2/RunX2/OSX signaling pathway during osteogenic differentiation of bone marrow mesenchymal stem cells. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2016;36(5):614–618.
  15. Yang G, Yuan G, MacDougall M, et al. BMP-2 induced Dspp transcription is mediated by Dlx3/Osx signaling pathway in odontoblasts. Sci Rep. 2017;7(1):10775. doi:10.1038/s41598-017-10908-8
  16. Cooley MA, Harikrishnan K, Oppel JA, et al. Fibulin-1 is required for bone formation and Bmp-2-mediated induction of Osterix. Bone. 2014;69:30–38. doi:10.1016/j.bone.2014.07.038
  17. Sinha KM, Zhou X. Genetic and molecular control of osterix in skeletal formation. J Cell Biochem. 2013;114(5):975–984. doi:10.1002/jcb.24439
  18. Feng JQ, Zhang H, Qin C. Letter to the Editor: Osterix regulates tooth root formation in a site-specific manner. J Dent Res. 2015;94(9):1326. doi:10.1177/0022034515593744
  19. Mizoguchi T, Pinho S, Ahmed J, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014;29(3):340–349. doi:10.1016/j.devcel.2014.03.013
  20. Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555. doi:10.1038/nrg3763
  21. Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm. 2014;459(1–2):70–83. doi:10.1016/j.ijpharm.2013.11.041
  22. Xun MM, Liu YH, Guo Q, et al. Low molecular weight PEI-appended polyesters as non-viral gene delivery vectors. Eur J Med Chem. 2014;78:118–125. doi:10.1016/j.ejmech.2014.03.050
  23. Yan X, Zhang Y, Zhang H, et al. Amphiphilic polyethylenimine (PEI) as highly efficient non-viral gene carrier. Org Biomol Chem. 2014;12(12):1975–1982. doi:10.1039/c3ob42279h
  24. Shen J, Xu R, Mai J, et al. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano. 2013;7(11):9867–9880. doi:10.1021/nn4035316
  25. Elsabahy M, Nazarali A, Foldvari M. Non-viral nucleic acid delivery: Key challenges and future directions. Curr Drug Deliv. 2011;8(3):235–244.
  26. Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv. 2013;10(2):215–228. doi:10.1517/17425247.2013.744964
  27. Kempen DH, Lu L, Hefferan TE, et al. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering. Biomaterials. 2008;29(22):3245–3252. doi:10.1016/j.biomaterials.2008.04.031
  28. Qiao C, Zhang K, Jin H, et al. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int J Nanomedicine. 2013;8:2985–2995. doi:10.2147/IJN.S45184
  29. Mao C, Pan W, Shao X, et al. The clearance effect of tetrahedral dna nanostructures on senescent human dermal fibroblasts. ACS Appl Mater Interfaces. 2019;11(2):1942–1950. doi:10.1021/acsami.8b20530
  30. Daltaban O, Saygun I, Bal B, et al. Gingival crevicular fluid alkaline phosphatase levels in postmenopausal women: effects of phase I periodontal treatment. J Periodontol. 2006;77(1):67–72. doi:10.1902/jop.2006.77.1.67
  31. Ding LZ, Teng X, Zhang ZB, et al. Mangiferin inhibits apoptosis and oxidative stress via BMP2/Smad-1 signaling in dexamethasone-induced MC3T3-E1 cells. Int J Mol Med. 2018;41(5):2517–2526. doi:10.3892/ijmm.2018.3506
  32. Shen H, Wang J, Min J, et al. Activation of TGF-beta1/alpha-SMA/Col I profibrotic pathway in fibroblasts by galectin-3 contributes to atrial fibrosis in experimental models and patients. Cell Physiol Biochem. 2018;47(2):851–863. doi:10.1159/000490077
  33. Brady KP, Dushkin H, Fornzler D, et al. A novel putative transporter maps to the osteosclerosis (oc) mutation and is not expressed in the OC mutant mouse. Genomics. 1999;56(3):254–261. doi:10.1006/geno.1998.5722
  34. Martins CM, de Azevedo Queiroz IO, Ervolino E, et al. RUNX-2, OPN and OCN expression induced by grey and white mineral trioxide aggregate in normal and hypertensive rats. Int Endod J. 2018;51(6):641–648. doi:10.1111/iej.12876
  35. Byeon H, Lee SD, Hong EK, et al. Long-term prognostic impact of osteopontin and Dickkopf-related protein 1 in patients with hepatocellular carcinoma after hepatectomy. Pathol Res Pract. 2018;214(6):814–820. doi:10.1016/j.prp.2018.05.002
  36. Zhang Q, Lin S, Zhang T, et al. Curved microstructures promote osteogenesis of mesenchymal stem cells via the RhoA/ROCK pathway. Cell Prolif. 2017;50(4):e12356. doi:10.1111/cpr.12356