Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 3, March, p. 385–397

doi: 10.17219/acem/115005

Publication type: review article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Evaluation of the potential of nanoparticles containing active substances in selected chronic diseases

Beata Sarecka-Hujar1,A,B,C,D,E,F, Anna Banyś2,A,B,C,D,E,F, Aneta Ostróżka-Cieślik2,A,B,C,D,E,F, Radosław Balwierz3,B,D,F, Barbara Dolińska2,D,F

1 Department of Basic Biomedical Science, Medical University of Silesia in Katowice, Poland

2 Department of Pharmaceutical Technology, Medical University of Silesia in Katowice, Poland

3 Department of Health Care, Silesian Medical College, Katowice, Poland

Abstract

Currently, over 80% of all deaths result from the incidence of chronic diseases. The challenge of modern medicine is to develop innovative and effective methods of diagnosis and therapy of these disorders. Different types of particles can be obtained with the use of nanotechnology, including nanoliposomes, solid lipid nanoparticles (SLN), nanospheres, dendrimers, as well as carbon nanotubes (CNT) or fullerenes. All of these nanoparticles (NPs) are suggested to have potential, both in medicine and in diagnosis of many diseases, giving a chance for recovery or longer life for the patients. The studies concerning the usage of NPs show their effective role in most cases. However, there are also concerns about their toxicity or long-term adverse effects. The aim of this literature review was to discuss the results of the latest available studies concerning the efficacy of selected drug-loaded nanocarriers in several chronic diseases, i.e., cardiac disorders, cancer, Alzheimer’s disease (AD), Parkinson’s disease (PD), and wound healing. We also focused our attention on the methodology of NPs preparation, materials used for their preparation as well as on positive and negative aspects of these nanocarriers.

Key words

cancer, cardiac diseases, nanoparticles, neurodegenerative diseases, wound healing

References (115)

  1. Schmidt H. Chronic disease prevention and health promotion. In: Barrett DH, Ortmann LH, Dawson A, Saenz C, Reis A, Bolan G, eds. Public Health Ethics: Cases Spanning the Globe. Cham, Switzerland: Springer; 2016:137–176.
  2. Gasztych M, Komsa K, Musia W. Influence of hydrophilic co-monomer on the drug release from hydrogels with thermosensitive N-(isopropyl)acrylamide derivatives. J Nanosci Nanotechnol. 2019;19(5):2514–2521.
  3. Serrano DR, Gallagher KH, Healy AM. Emerging nanonisation technologies: Tailoring crystalline versus amorphous nanomaterials. Curr Top Med Chem. 2015:15(22):2327–2340.
  4. Jin K, Luo Z, Zhang B, Pang Z. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B. 2018;8(1):23–33.
  5. Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: A review. Int J Mol Sci. 2014;15(4):5852–5873.
  6. Ostróżka-Cieślik A, Sarecka-Hujar B. The use of nanotechnology in modern pharmacotherapy. In: Grumezescu AM. Multifunctional ­Systems for Combined Delivery, Biosensing and Diagnostics. Amsterdam, the Netherlands: Elsevier Inc.; 2017:139–158.
  7. Cicha I, Singh R, Garlichs CD, Alexiou C. Nano-biomaterials for cardiovascular applications: Clinical perspective. J Control Release. 2016;229:23–36.
  8. Swain S, Sahu PK, Beg S, Babu SM. Nanoparticles for cancer targeting: Current and future directions. Curr Drug Deliv. 2016;13(8):1290–1302.
  9. Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer’s disease: Diagnosis, therapy, and safety issues. Nano­medicine. 2011;7(5):521–540.
  10. Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ. Micro- and nanotechnology approaches to improve Parkinson’s disease therapy. J Control Release. 2019;295:201–213.
  11. Oyarzun-Ampuero F, Vidal A, Concha M, Morales J, Orellana S, Moreno-Villoslada I. Nanoparticles for the treatment of wounds. Curr Pharm Des. 2015;21(29):4329–4341.
  12. Gupta R, Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. 2018;37(3):209–230.
  13. Baran A. Nanotechnology: Legal and ethical issues. Economics and Management. 2016;8:47–54.
  14. Paradise J. Regulating nanomedicine at the Food and Drug Administration. AMA J Ethics. 2019;21(4):E347–355.
  15. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–999.
  16. Banerjee SS, Aher N, Patil R, Khandare J. Poly(ethylene glycol)-prodrug conjugates: Concept, design, and applications. J Drug Deliv. 2012;2012:103973.
  17. Talegaonkar S, Bhattacharyya A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS Pharm Sci Tech. 2019;20(3):121.
  18. Momoh MA, Esimone CO. Phospholipon 90H (P90H)-based PEGylated microscopic lipospheres delivery system for gentamicin: An antibiotic evaluation. Asian Pac J Trop Biomed. 2012;2(11):889–894.
  19. Kovács A, Berkó S, Csányi E, Csóka I. Development of nanostructured lipid carriers containing salicyclic acid for dermal use based on the Quality by Design method. Eur J Pharm Sci. 2017;99:246–257.
  20. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613.
  21. Andonova V, Peneva P. Characterization methods for solid lipid nano­particles (SLN) and nanostructured lipid carriers (NLC). Curr Pharm Des. 2017;23:6630–6642.
  22. Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: A review. Crit Rev Ther Drug Carrier Syst. 2002;19(2):99–134.
  23. Tripathy S, Das MK. Dendrimers and their applications as novel drug delivery carriers. J Appl Pharmaceut Sci. 2013;3(9):142–149.
  24. Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22(9). pii: E1401. doi:10.3390/molecules22091401
  25. Cai X, Hao J, Zhang X, et al. The polyhydroxylated fullerene derivative C60(OH)24 protects mice from ionizing-radiation-induced immune and mitochondrial dysfunction. Toxicol Appl Pharmacol. 2010;243(1):27–34.
  26. Ostróżka-Cieślik A, Sarecka-Hujar B. Perspectives of the carbon nano­particles use in cancer therapy and imaging. Post Biol Kom. 2017;44:171–184.
  27. Chaudhary KT, Rizvi ZH, Bhatti KA, Ali J, Yupapin PP. Multiwalled carbon nanotube synthesis using arc discharge with hydrocarbon as feedstock. J Nanomater. 2013;2013:105145. doi:10.1155/2013/105145
  28. Bianco A, Kostarelos K, Partidos C, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun (Camb). 2005;5:571–577.
  29. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9(6):674–679.
  30. Palomäki J, Välimäki E, Sund J, et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a ­similar mechanism. ACS Nano. 2011;5(9):6861–6870.
  31. Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. Pulmonary toxicity of carbon nanotubes and asbestos: Similarities and differences. Adv Drug Deliv Rev. 2013;65(15):2078–2086.
  32. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016;11(6):673–692.
  33. des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J Control Release. 2006;116(1):1–27.
  34. Karagkiozaki V, Pappa F, Arvaniti D, Moumkas A, Konstantinou D, Logothetidis S. The melding of nanomedicine in thrombosis imaging and treatment: A review. Future Sci OA. 2016;2(2):FSO113.
  35. Korin N, Kanapathipillai M, Matthews BD, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2012;337(6095):738–742.
  36. Wootton DM, Alevriadou BR. The shear stress of busting blood clots. N Engl J Med. 2012;367(14):1361–1363.
  37. Dvir T, Bauer M, Schroeder A, et al. Nanoparticles targeting the infar­cted heart. Nano Lett. 2011;11(10):4411–4414.
  38. Shao M, Yang W, Han G. Protective effects on myocardial infarction model: Delivery of schisandrin B using matrix metalloproteinase-sensitive peptide-modified, PEGylated lipid nanoparticles. Int J Nanomedicine. 2017;12:7121–7130.
  39. Ferreira MP, Ranjan S, Correia AM, et al. In vitro and in vivo assessment of heart-homing porous silicon nanoparticles. Biomaterials. 2016;94:93–104.
  40. Tölli MA, Ferreira MP, Kinnunen SM, et al. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials. 2014;35(29):8394–8405.
  41. Chan WT, Liu CC, Chiang Chiau JS, et al. In vivo toxicologic study of larger silica nanoparticles in mice. Int J Nanomedicine. 2017;12:3421–3432.
  42. Yu Y, Li Y, Wang W, et al. Acute toxicity of amorphous silica nanoparticles in intravenously exposed ICR mice. PLoS One. 2013;8(4):e61346.
  43. Michler RE. Stem cell therapy for heart failure. Methodist Debakey Cardiovasc J. 2013;9(4):187–194.
  44. Ma Q, Yang J, Huang X, et al. Poly(lactide-Cc-glycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue. Stem Cells. 2018;36(4):540–550.
  45. Nakano Y, Matoba T, Tokutome M, et al. Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation. Sci Rep. 2016;6:29601.
  46. Qi Q, Lu L, Li H, et al. Spatiotemporal delivery of nanoformulated liraglutide for cardiac regeneration after myocardial infarction. Int J Nanomedicine. 2017;12:4835–4848.
  47. Zhang B, Sai Lung P, Zhao S, Chu Z, Chrzanowski W, Li Q. Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Sci Rep. 2017;7:7315.
  48. Miragoli M, Ceriotti P, Iafisco M, et al. Inhalation of peptide-loaded nanoparticles improves heart failure. Sci Transl Med. 2018:10(424). pii: eaan6205. doi:10.1126/scitranslmed.aan6205
  49. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: An evolving paradigm. Nat Rev Cancer. 2013;13(10):714–726.
  50. Tang Y, Lamberti G, Curran E, Kiani M, Wang B. Development and characterization of a multi-drug resistant Her-2/neu positive breast cancer cell line [abstract]. FASEB J. 2014;28(Suppl):58.6.
  51. Jackson SE, Chester JD. Personalised cancer medicine. Int J Cancer. 2015;137(2):262–266.
  52. Miyano T, Wijagkanalan W, Kawakami S, Yamashita F, Hashida M. Anionic amino acid dendrimer-trastuzumab conjugates for specific internalization in HER2-positive cancer cells. Mol Pharm. 2010;7(4):1318–1327.
  53. Kulhari H, Pooja D, Shrivastava S, et al. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep. 2016;6:23179.
  54. Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SR. Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm. 2016;13(7):2363–2675.
  55. Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 2003;257(1–2):111–124.
  56. Zhao X, Qi T, Kong C, et al. Photothermal exposure of polydopamine-coated branched Au-Ag nanoparticles induces cell cycle arrest, apoptosis, and autophagy in human bladder cancer cells. Int J Nano­medicine. 2018;13:6413–6428.
  57. Chen ML, He YJ, Chen XW, Wang JH. Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir. 2012;28(47):16469–16476.
  58. Shi X, Wang SH, Shen M, et al. Multifunctional dendrimer-modified multiwalled carbon nanotubes: Synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules. 2009;10(7):1744–1750.
  59. Chaudhuri P, Paraskar A, Soni S, Mashelkar RA, Sengupta S. Fullerenol-cytotoxic conjugates for cancer chemotherapy. ACS Nano. 2009;3(9):2505–2514.
  60. Torres VM, Srdjenovic B, Jacevic V, Simic VD, Djordjevic A, Simplício AL. Fullerenol C60(OH)24 prevents doxorubicin-induced acute cardiotoxicity in rats. Pharmacol Rep. 2010;62(4):707–718.
  61. Sheng J, Ma B, Yang Q, Zhang C, Jiang Z, Borrathybay E. Tailor-made PEG-DA-CuS nanoparticles enriched in tumor with the aid of retro Diels–Alder reaction triggered by their intrinsic photothermal property. Int J Nanomedicine. 2018;13:4291–4302.
  62. Yang SC, Zhu JB. Preparation and characterization of camptothecin solid lipid nanoparticles. Drug Dev Ind Pharm. 2002;28(3):265–274.
  63. Rodenak-Kladniew B, Islan GA, de Bravo MG, Durán N, Castro GR. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf B Biointerfaces. 2017;154:123–132.
  64. Zhou X, Liu HY, Zhao H, Wang T. RGD-modified nanoliposomes containing quercetin for lung cancer targeted treatment. Onco Targets Ther. 2018;11:5397–5405.
  65. Hasan M, Belhaj N, Benachour H, et al. Liposome encapsulation of curcumin: Physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm. 2014;461(1–2):519–528.
  66. Chen Q, Liu J. Transferrin and folic acid co-modified bufalin-loaded nanoliposomes: Preparation, characterization, and application in anticancer activity. Int J Nanomedicine. 2018;13:6009–6018.
  67. Zabielska-Koczywąs K, Wojtalewicz A, Użarowska E, et al. Distribution of glutathione-stabilized gold nanoparticles in feline fibrosarcomas and their role as a drug delivery system for doxorubicin-preclinical studies in a murine model. Int J Mol Sci. 2018;19(4):1021.
  68. Hersh DS, Wadajkar AS, Roberts N, et al. Evolving drug delivery strategies to overcome the blood–brain barrier. Curr Pharm Des. 2016;22(9):1177–1193.
  69. Dordević SM, Radulović TS, Cekić ND, et al. Experimental design in formulation of diazepam nanoemulsions: Physicochemical and pharmacokinetic performances. J Pharm Sci. 2013;102(11):4159–4172.
  70. Dordević SM, Cekić ND, Savić MM, et al. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. Int J Pharm. 2015;493(1–2):40–54.
  71. Sadegh Malvajerd S, Azadi A, Izadi Z, et al. Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: Preparation, optimization, and pharmacokinetic evaluation. ACS Chem Neurosci. 2019;10(1):728–739. doi:10.1021/acschemneuro.8b00510
  72. Liu S, Ho PC. Intranasal administration of brain-targeted HP-β-CD/chitosan nanoparticles for delivery of scutellarin, a compound with protective effect in cerebral ischaemia. J Pharm Pharmacol. 2017;69(11):1495–1501.
  73. Sharma D, Sharma RK, Bhatnagar A, et al. Nose to brain delivery of midazolam loaded PLGA nanoparticles: In vitro and in vivo investigations. Curr Drug Deliv. 2016;13(4):557–564.
  74. Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4). pii: a033118. doi:10.1101/cshperspect.a033118
  75. Serý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: A review. Folia Neuropathol. 2013;51(1):1–9.
  76. Bartus RT, Emerich DF. Cholinergic markers in Alzheimer disease. JAMA. 1999;282(23):2208–2209.
  77. Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother. 2018;106:553–565.
  78. Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 2008;70(1):75–84.
  79. Tian XH, Lin XN, Wei F, et al. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine. 2011;6:445–452.
  80. Sun W, Xie C, Wang H, Hu Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials. 2004;25(15):3065–3071.
  81. Truran S, Weissig V, Madine J, et al. Nanoliposomes protect against human arteriole endothelial dysfunction induced by β-amyloid peptide. J Cereb Blood Flow Metab. 2016;36(2):405–412.
  82. Mourtas S, Canovi M, Zona C, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials. 2011;32(6):1635–1645.
  83. Klementieva O, Aso E, Filippini D, et al. Effect of poly(propylene imine) glycodendrimers on β-amyloid aggregation in vitro and in APP/PS1 transgenic mice, as a model of brain amyloid deposition and Alzheimer’s disease. Biomacromolecules. 2013;14(10):3570–3580.
  84. Klajnert B, Wasiak T, Ionov M, et al. Dendrimers reduce toxicity of Aβ 1-28 peptide during aggregation and accelerate fibril formation. Nanomedicine. 2012;8(8):1372–1378.
  85. Li H, Luo Y, Derreumaux P, Wei G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β(16-22) peptide. Biophys J. 2011;101(9):2267–2276.
  86. Yang Z, Zhang Y, Yang Y, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6(3):427–441.
  87. Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int J Pharm. 2017;530(1–2):263–278.
  88. Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson’s disease therapeutics: New developments and challenges since the introduction of levodopa. Neuropsychopharmacology. 2012;37(1):213–246.
  89. Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood–brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci. 2019;14(5):480–496.
  90. TreatER Project. https://treater.eu/clinical-study/. Accessed March 3, 2019.
  91. Hu K, Chen X, Chen W, et al. Neuroprotective effect of gold nano­particles composites in Parkinson’s disease model. Nanomedicine. 2018;14(4):1123–1136.
  92. Cao X, Hou D, Wang L, et al. Effects and molecular mechanism of chitosan-coated levodopa nanoliposomes on behavior of dyskinesia rats. Biol Res. 2016;49(1):32.
  93. Aliakbari F, Mohammad-Beigi H, Rezaei-Ghaleh N, et al. The potential of zwitterionic nanoliposomes against neurotoxic alpha-synuclein aggregates in Parkinson’s disease. Nanoscale. 2018;10(19):9174–9185.
  94. Al-Dhubiab BE, Nair AB, Kumria R, Attimarad M, Harsha S. Development and evaluation of buccal films impregnated with selegiline-loaded nanospheres. Drug Deliv. 2016;23(7):2154–2162.
  95. Milowska K, Grochowina J, Katir N, et al. Viologen-phosphorus dendrimers inhibit α-synuclein fibrillation. Mol Pharm. 2013;10(3):1131–1137.
  96. Milowska K, Szwed A, Mutrynowska M, et al. Carbosilane dendrimers inhibit α-synuclein fibrillation and prevent cells from rotenone-induced damage. Int J Pharm. 2015;484(1–2):268–275.
  97. Parani M, Lokhande G, Singh A, Gaharwar AK. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl Mater Interfaces. 2016;8(16):10049–10069.
  98. Chopra I. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? J Antimicrob Chemother. 2007;59(4):587–590.
  99. Prabhu S, Poulose EK. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int Nano Lett. 2012;2:2–10.
  100. Larese FF, D’Agostin F, Crosera M, et al. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology. 2009;255(1–2):33–37.
  101. Ziv-Polat O, Topaz M, Brosh T, Margel S. Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials. 2010;31(4):741–747.
  102. Leu JG, Chen SA, Chen HM, et al. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine. 2012;8(5):767–775.
  103. Wang S, Yan C, Zhang X, et al. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nano­particles for accelerating diabetic wound healing. Biomater Sci. 2018;6(10):2757–2772.
  104. Mirnejad R, Mofazzal Jahromi M, Al-Musawi S, et al. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran J Biotechnol. 2014;12(3):e1012.
  105. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33–64.
  106. Elmoslemany RM, Abdallah OY, El-Khordagui LK, Khalafallah NM. Propylene glycol liposomes as a topical delivery system for mico­nazole nitrate: Comparison with conventional liposomes. AAPS PharmSciTech. 2012;13(2):723–731.
  107. Kianvash N, Bahador A, Pourhajibagher M, et al. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: Biocompatibility, wound healing, and anti-bacterial effects. Drug Deliv Transl Res. 2017:7(5):654–663.
  108. Partoazar A, Kianvash N, Darvishi MH, Nasoohi S, Rezayat SM, Bahador A. Ethosomal curcumin promoted wound healing and reduced bacterial flora in second degree burn in rat. Drug Res (Stuttg). 2016;66(12):660–665.
  109. Li C, Zhang X, Huang X, Wang X, Liao G, Chen Z. Preparation and characterization of flexible nanoliposomes loaded with daptomycin, a novel antibiotic, for topical skin therapy. Int J Nanomedicine. 2013;8:1285–1292.
  110. Xu HL, Chen PP, ZhuGe DL, et al. Liposomes with silk fibroin hydrogel core to stabilize bFGF and promote the wound healing of mice with deep second-degree scald. Adv Healthc Mater. 2017;6(19). doi:10.1002/adhm.201700344
  111. Kim MH, Seo JH, Kim HM, Jeong HJ. Zinc oxide nanoparticles, a novel candidate for the treatment of allergic inflammatory diseases. Eur J Pharmacol. 2014;738:31–39.
  112. Ali SS, Morsy R, El-Zawawy NA, Fareed MF, Bedaiwy MY. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): A novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int J Nanomedicine. 2017;12:6059–6073.
  113. Chereddy KK, Her CH, Comune M, et al. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release. 2014;194:138–147.
  114. Sargent LM, Porter DW, Staska LM, et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 2014;11:3.
  115. Fukushima S, Kasai T, Umeda Y, Ohnishi M, Sasaki T, Matsumoto M. Carcinogenicity of multi-walled carbon nanotubes: Challenging issue on hazard assessment. J Occup Health. 2018;60(1):10–30.