Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.3)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 3, March, p. 375–384

doi: 10.17219/acem/115083

Publication type: review

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

The ways of using machine learning in dentistry

Monika Elżbieta Machoy1,A,B,C,D,E,F, Liliana Szyszka-Sommerfeld1,B,F, Andras Vegh2,E,F, Tomasz Gedrange3,4,E,F, Krzysztof Woźniak1,E,F

1 Department of Orthodontics, Pomeranian Medical University, Szczecin, Poland

2 Department of Orofacial Orthopaedics and Orthodontics, Heim Pal Children’s Hospital, Budapest, Hungary

3 Division of Orthodontics, Technische Universität Dresden, Germany

4 Department of Oral Surgery, Wroclaw Medical University, Poland

Abstract

Innovative computer techniques are starting to be employed not only in academic research, but also in commercial production, finding use in many areas of dentistry. This is conducive to the digitalization of dentistry and its increasing treatment and diagnostic demands. In many areas of dentistry, such as orthodontics and maxillofacial surgery, but also periodontics or prosthetics, only a correct diagnosis ensures the correct treatment plan, which is the only way to restore the patient’s health. The diagnosis and treatment plan is based on the specialist’s knowledge, but is subject to a large, multi-factorial risk of error. Therefore, the introduction of multiparametric pattern recognition methods (statistics, machine learning and artificial intelligence (AI)) is a great hope for both the physicians and the patients. However, the general use of clinical decision support systems (CDSS) in a dental clinic is not yet realistic and requires work in many aspects – methodical, technological and business. The article presents a review of the latest attempts to apply AI, such as CDSS or genetic algorithms (GAs) in research and clinical dentistry, taking under consideration all of the main dental specialties. Work on the introduction of public CDSS has been continued for years. The article presents the latest achievements in this field, analyzing their real-life application and credibility.

Key words

dentistry, clinical decision support systems, machine learning, artificial intelligence, CDSS

References (46)

  1. Mendonça EA. Clinical decision support systems: Perspectives in dentistry. J Dent Educ. 2004;68(6):589–597.
  2. Wirtschafter D, Carpenter JT, Mesel E. A consultant-extender system for breast cancer adjuvant chemotherapy. Ann Intern Med. 1979;90(3):396–401.
  3. Rudin JL. DART (Diagnostic Aid and Resource Tool): A computerized clinical decision support system for oral pathology. Part 2. Compendium. 1995;16(1):8,10,12 passim; quiz 17.
  4. Rudin JL. DART (Diagnostic Aid and Resource Tool): A computerized clinical decision support system for oral pathology. Compendium. 1994;15(10):1316,1318,1320 passim.
  5. McKnight LK, Stetson PD, Chen ES, Cimino JJ. Improving clinical communication with a virtual whiteboard. Proceedings/AMIA Annual Fall Symposium, 2002.
  6. Cross SS, Harrison RF, Kennedy RL. Introduction to neural networks. Lancet. 1995;346(8982):1075–1079.
  7. Rennels GD, Shortliffe EH. Advanced computing for medicine. Sci Am. 1987;257:154–161.
  8. Shortliffe EH. Computer programs to support clinical decision making. JAMA. 1987;258(1):61–66.
  9. Walton JD, Musen MA, Combs DM, Lane CD, Shortliffe EH, Fagan LM. Graphical access to medical expert systems. III: Design of a knowledge acquisition environment. Methods Inf Med. 1987;26(3):78–88.
  10. Rennels GD, Shortliffe EH, Stockdale FE, Miller PL. A computational model of reasoning from the clinical literature. Comput Methods ­Programs Biomed. 1987;24(2):139–149.
  11. Heckerman DE, Horvitz EJ, Nathwani BN. Toward normative expert systems. Part I: The Pathfinder Project. Methods Inf Med. 1992;31(2):90–105.
  12. Speight PM, Elliott AE, Jullien JA, Downer MC, Zakrzewska JM. The use of artificial intelligence to identify people at risk of oral cancer and precancer. Br Dent J. 1995;179(10):382–387.
  13. Brickley MR, Shepherd JP. Performance of a neural network trained to make third-molar treatment-planning decisions. Med Decis Making. 1996;16(2):153–160.
  14. White SC. Computer-aided differential diagnosis of oral radiographic lesions. Dentomaxillofac Radiol. 1989;18(2):53–59.
  15. Hyman JJ, Doblecki W. Computerized endodontic diagnosis. J Am Dent Assoc. 1983;107:755–758.
  16. Matsumura Y. RHINOS: A consultation system for diagnosis of headache and facial pain. Comput Methods Programs Biomed. 1986;23(1):65–71.
  17. Miller PL, Black HR. HT-ATTENDING: Critiquing the pharmacologic management of essential hypertension. J Med Syst. 1984;8(3):181–187.
  18. van der Lei J, Musen MA. A model for critiquing based on automated medical records. Comput Biomed Res. 1991;24(4):344–378.
  19. Davenport JC, Hammond P, Hazlehurst P. Knowledge-based systems, removable partial denture design and the development of RaPiD. Dent Update. 1997;24(6):227–233.
  20. Seok Ki J, Tae-Woo K. New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofacial Orthop. 2016;149(1):127–133. doi:10.1016/j.ajodo.2015.07.030
  21. Takada K, Yagi M, Horiguchi E. Computational formulation of orthodontic tooth-extraction decisions. Part I: To extract or not to extract. Angle Orthod. 2009;79(5):885–891.
  22. Moghimi S, Talebi M, Parisay I. Design and implementation of a hybrid genetic algorithm and artificial neural network system for predicting the sizes of unerupted canines and premolars. Eur J Orthod. 2012;34(4):480–486. doi:10.1093/ejo/cjr042
  23. Xie X, Wang L, Wang A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 2010;80(2):262–266. doi:10.2319/111608-588.1
  24. Nieri M, Crescini A, Rotundo R, Bacetti T, Cortellini P, Pini Prato GP. Factors affecting the clinical approach to impacted maxillary canines: A Bayesian network analysis. Am J Orthod Dentofacial Orthop. 2010;137(6):755–762. doi:10.1016/j.ajodo.2008.08.028
  25. Mario MC, Abe JM, Ortega NR, Del Santo M Jr. Paraconsistent artificial neural network as auxiliary in cephalometric diagnosis. Artif Organs. 2010;34(7):E215–221. doi:10.1111/j.1525-1594.2010.00994.x
  26. Niño-Sandoval TC, Guevara Pérez SV, González FA, Jaque RA, Infante-Contreras C. Use of automated learning techniques for predicting mandibular morphology in skeletal class I, II and III. Forensic Sci Int. 2017;281:187.e1–187.e7. https://doi.org/10.1016/j.forsciint.2017.10.004
  27. Niño-Sandoval TC, Guevara Perez SV, González FA, Jaque RA, Infante-Contreras C. An automatic method for skeletal patterns classification using craniomaxillary variables on a Colombian population. Forensic Sci Int. 2016;261:159.e1–6. doi:10.1016/j.forsciint.2015.12.025
  28. Aliaga IJ, Vera V, De Paz JF, García AE, Mohamad MS. Modelling the longevity of dental restorations by means of a CBR system. Biomed Res Int. 2015;2015:540306. doi:10.1155/2015/540306
  29. Li H, Lai L, Chen L, Lu C, Cai Q. The prediction in computer color matching of dentistry based on GA+BP neural network. Comput Math Methods Med. 2015;2015:816719. doi:10.1155/2015/816719
  30. Chen Q, Wu J, Li S, Lyu P, Wang Y, Li M. An ontology-driven, case-based clinical decision support model for removable partial denture design. Sci Rep. 2016;6:27855. doi:10.1038/srep27855
  31. Thanathornwong B, Suebnukarn S, Ouivirach K. Decision support system for predicting color change after tooth whitening. Comput Methods Programs Biomed. 2016;125:88–93. doi:10.1016/j.cmpb.2015.11.004
  32. Ozden FO, Özgönenel O, Özden B, Aydogdu A, Niger J. Diagnosis of periodontal diseases using different classification algorithms: A preliminary study. Clin Pract. 2015;18(3):416–421. doi:10.4103/1119-3077.151785
  33. Papantonopoulos G, Takahashi K, Bountis T, Loos BG. Artificial neural networks for the diagnosis of aggressive periodontitis trained by immunologic parameters. PLoS One. 2014;9(3):e89757. doi:10.1371/journal.pone.0089757
  34. Nakano Y, Takeshita T, Kamio N, et al. Supervised machine learning-based classification of oral malodor based on the microbiota in saliva samples. Artif Intell Med. 2014;60(2):97–101. doi:10.1016/j.artmed. 2013.12.001
  35. Dar-Odeh NS, Alsmadi OM, Bakri F, et al. Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks. Adv Appl Bioinform Chem. 2010;3:7.
  36. Iwasaki H. Bayesian belief network analysis applied to determine the progression of temporomandibular disorders using MRI. Dentomaxillofac Radiol. 2015;44(4):20140279. doi:10.1259/dmfr.20140279
  37. Lövgren A, Marklund S, Visscher CM, Lobbezoo F, Häggman-Henrikson B, Wänman A. Outcome of three screening questions for temporomandibular disorders (3Q/TMD) on clinical decision-making. J Oral Rehabil. 2017;44(8):573–579. doi:10.1111/joor.12518
  38. Bas B, Ozgonenel O, Ozden B, Bekcioglu B, Bulut E, Kurt M. Use of artificial neural network in differentiation of subgroups of temporomandibular internal derangements: A preliminary study. J Oral Maxillofac Surg. 2012;70(1):51–59. doi:10.1016/j.joms.2011.03.069
  39. Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asgar K. The reliability of artificial neural network in locating minor apical foramen: A cadaver study. J Endod. 2012;38(8):1130–1134. doi:10.1016/j.joen.2012.05.004
  40. Saghiri MA, Asgar K, Boukani KK, et al. A new approach for locating the minor apical foramen using an artificial neural network. Int Endod J. 2012;45(3):257–265. doi:10.1111/j.1365-2591.2011.01970.x
  41. Kositbowornchai S, Plermkamon S, Tangkosol T. Performance of an artificial neural network for vertical root fracture detection: An ex vivo study. Dent Traumatol. 2013;29(2):151–155. doi:10.1111/j.1600-9657.2012.01148.x
  42. Mago VK, Bhatia N, Bhatia A, Mago A. Clinical decision support system for dental treatment. J Comput Sci. 2012;3(5):254–261. https://doi.org/10.1016/j.jocs.2012.01.008.
  43. Polášková A, Feberová J, Dostálová T, Kříž P, Seydlová M. Clinical decision support system in dental implantology. MEFANET J. 2013;1:11–14.
  44. Chang SW, Abdul-Kareem S, Merican AF, Zain RB. Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods. BMC Bioinformatics. 2013;14:170. doi:10.1186/1471-2105-14-170
  45. de Bruijn M, ten Bosch L, Kuik DJ, Langendijk JA, Leemans CR, Verdonck-de Leeuw I. Artificial neural network analysis to assess hypernasality in patients treated for oral or oropharyngeal cancer. Logoped Phoniatr Vocol. 2011;36(4):168–174.
  46. Scrobotă I, Băciuț G, Filip AG, Todor B, Blaga F, Băciuț MF. Application of fuzzy logic in oral cancer risk assessment. Iran J Public Health. 2017;46(5):612–619.