Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 3, March, p. 313–323

doi: 10.17219/acem/117683

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Role of chromatin remodeling complex SWI/SNF and VDR in chronic rhinosinusitis

Katarzyna Kowalik1,B,C,D,E,F, Martyna Waniewska-Łęczycka1,B,C,E,F, Elżbieta Sarnowska2,A,B,C,E,F, Natalia Rusetska2,B,C,E,F, Janusz Sierdziński3,C,F, Mariola Zagor1,A,B,C,E,F

1 Department of Otorhinolaryngology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Poland

2 Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Institute Oncology Center, Warszawa, Poland

3 Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Poland


Background. The SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex enables glucocorticoid receptor (GR) and vitamin D receptor (VDR) to function correctly and is engaged in inflammation response. The SWI/SNF may play an important role in chronic rhinosinusitis (CRS).
Objectives. The aim of this study was to assess the following: 1) the gene and protein expression of the SWI/SNF complex subunits in sinonasal mucosa; 2) relation of SWI/SNF complex and VDR expression; and 3) correlation with clinical data.
Material and Methods. The study population consisted of 52 subjects with CRS without nasal polyps, 55 with CRS with nasal polyps and 59 controls. The SWI/SNF protein expression level was analyzed in immunohistochemical (IHC) staining. Human nasal epithelial cells (HNECs) was stimulated using lipopolysaccharide (LPS), Staphylococcal enterotoxin B (SEB) and vitamin D3 (vitD3) in vitro. The transcript level of the SWI/SNF subunits was measured with polymerase chain reaction (PCR).
Results. In the control group, the intensity of the IHC staining for SWI/SNF subunits was significantly higher than in both groups of patients with CRS (p < 0.05). A positive correlation of the SWI/SNF protein expression was noticed with VDR expression level (p < 0.043). Association between SWI/SNF protein expression level and allergy, neutrophils and body mass index (BMI) has been observed (p < 0.05). The decreased transcript level of the SWI/SNF subunits genes in HNECs was observed after LPS stimulation and increased after vitD3 stimulation.
Conclusion. The SWI/SNF complex may influence CRS through steroid hormone signaling and VDR. Thus, modification in therapy may be mandatory in patients with CRS and altered SWI/SNF signaling, reflecting resistance to steroids treatment.

Key words

chronic sinusitis, nasal polyps, vitamin D, steroids

References (40)

  1. Bachert C, Holtappels G. Pathophysiology of chronic rhinosinusitis: Pharmaceutical therapy options. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2015;14:Doc09.
  2. Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):1–12.
  3. Orlandi RR, Kingdom TT, Hwang PH, et al. International Consensus Statement on Allergy and Rhinology: Rhinosinusitis. Int Forum Allergy Rhinol. 2016;6(Suppl 1):S22–209.
  4. Akdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of chronic rhinosinusitis: A PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2013;131(6):1479–1490.
  5. Ball SL, Suwara MI, Borthwick LA, Wilson JA, Mann DA, Fisher AJ. How reliable are sino-nasal cell lines for studying the pathophysiology of chronic rhinosinusitis? Ann Otol Rhinol Laryngol. 2015;124(6):437–442.
  6. Ramirez-Carrozzi VR, Nazarian AA, Li CC, et al. Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev. 2006;20(3):282–296.
  7. Santen GW, Kriek M, van Attikum H. SWI/SNF complex in disorder: Switching from malignancies to intellectual disability. Epigenetics. 2012;7(11):1219–1224.
  8. Sarnowska E, Gratkowska DM, Sacharowski SP, et al. The role of SWI/SNF chromatin remodeling complexes in hormone crosstalk. Trends Plant Sci. 2016;21(7):594–608.
  9. Smith CL, Horowitz-Scherer R, Flanagan JF, Woodcock CL, Peterson CL. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat Struct Biol. 2003;10(2):141–145.
  10. Cairns BR, Kim YJ, Sayre MH, Laurent BC, Kornberg RD. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci U S A. 1994;91(5):1950–1954.
  11. Lou H, Wang C, Zhang L. Steroid transnasal nebulization in the treatment of chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2016;16(1):39–44.
  12. Trotter KW, King HA, Archer TK. Glucocorticoid receptor transcriptional activation via the BRG1-dependent recruitment of TOP2beta and Ku70/86. Mol Cell Biol. 2015;35(16):2799–2817.
  13. King HA, Trotter KW, Archer TK. Chromatin remodeling during glucocorticoid receptor regulated transactivation. Biochim Biophys Acta. 2012;1819(7):716–726.
  14. Wei Z, Yoshihara E, He N, et al. Vitamin D switches BAF complexes to protect beta cells. Cell. 2018;173(5):1135–1149.e1115.
  15. Stokes PJ, Rimmer J. The relationship between serum vitamin D and chronic rhinosinusitis: A systematic review. Am J Rhinol Allergy. 2016;30(1):23–28.
  16. Frieri M, Kumar K, Boutin A. Review: Immunology of sinusitis, trauma, asthma, and sepsis. Allergy Rhinol (Providence). 2015;6(3):205–214.
  17. Shahangian A, Schlosser RJ. Role of vitamin D in pathogenesis of chronic sinusitis with nasal polyposis. Adv Otorhinolaryngol. 2016;79:86–90.
  18. Mostafa Bel D, Taha MS, Abdel Hamid T, Omran A, Lotfi N. Evaluation of vitamin D levels in allergic fungal sinusitis, chronic rhinosinusitis, and chronic rhinosinusitis with polyposis. Int Forum Allergy Rhinol. 2016;6(2):185–190.
  19. Khalid AN, Ladha KS, Luong AU, Quraishi SA. Association of vitamin D status and acute rhinosinusitis: Results from the United States National Health and Nutrition Examination Survey 2001–2006. ­Medicine (Baltimore). 2015;94(40):e1447.
  20. Horak F, Doberer D, Eber E, et al. Diagnosis and management of asthma: Statement on the 2015 GINA Guidelines. Wien Klin Wochenschr. 2016;128(15–16):541–554.
  21. Psaltis AJ, Li G, Vaezeafshar R, Cho KS, Hwang PH. Modification of the Lund–Kennedy endoscopic scoring system improves its reliability and correlation with patient-reported outcome measures. Laryngoscope. 2014;124(10):2216–2223.
  22. Lang TA, Secic M. How to Report Statistics in Medicine. Philadelphia, PA: American College of Physicians; 2006:490.
  23. Hu G, Gong AY, Wang Y, et al. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J Immunol. 2016;196(6):2799–2808.
  24. Muratcioglu S, Presman DM, Pooley JR, et al. Structural modeling of GR interactions with the SWI/SNF chromatin remodeling complex and C/EBP. Biophys J. 2015;109(6):1227–1239.
  25. Ikeda K, Shiozawa A, Ono N, et al. Subclassification of chronic rhinosinusitis with nasal polyp based on eosinophil and neutrophil. Laryngo­scope. 2013;123(11):E1–9.
  26. Tecimer SH, Kasapoglu F, Demir UL, Ozmen OA, Coskun H, Basut O. Correlation between clinical findings and eosinophil/neutrophil ratio in patients with nasal polyps. Eur Arch Otorhinolaryngol. 2015;272(4):915–921.
  27. Hu Y, Cao PP, Liang GT, Cui YH, Liu Z. Diagnostic significance of blood eosinophil count in eosinophilic chronic rhinosinusitis with nasal ­polyps in Chinese adults. Laryngoscope. 2012;122(3):498–503.
  28. Sreeparvathi A, Kalyanikuttyamma LK, Kumar M, Sreekumar N, Veerasigamani N. Significance of blood eosinophil count in patients with chronic rhinosinusitis with nasal polyposis. J Clin Diagn Res. 2017;11(2):MC08–MC11.
  29. Fokkens WJ, Reitsma S. Proposal for an algorithm on the management of chronic rhinosinusitis. Allergy. 2019;74(7):1415–1416.
  30. Tomaszewska M, Sarnowska E, Rusetska N, et al. Role of vitamin D and its receptors in the pathophysiology of chronic rhinosinusitis. J Am Coll Nutr. 2019;38(2):108–118.
  31. Lund VJ, Mackay IS. Staging in rhinosinusitis. Rhinology. 1993;31(4):183–184.
  32. Hariri BM, Cohen NA. New insights into upper airway innate immunity. Am J Rhinol Allergy. 2016;30(5):319–323.
  33. Akbar NA, Zacharek MA. Vitamin D: mmunomodulation of asthma, allergic rhinitis, and chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg. 2011;19(3):224–228.
  34. Dimeloe S, Nanzer A, Ryanna K, Hawrylowicz C. Regulatory T cells, inflammation and the allergic response: The role of glucocorticoids and vitamin D. J Steroid Biochem Mol Biol. 2010;120(2–3):86–95.
  35. Kamen DL, Tangpricha V. Vitamin D and molecular actions on the immune system: Modulation of innate and autoimmunity. J Mol Med (Berl). 2010;88(5):441–450.
  36. Tripathi A, Kern R, Conley DB, et al. Staphylococcal exotoxins and nasal polyposis: Analysis of systemic and local responses. Am J Rhinol. 2005;19(4):327–333.
  37. Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017;12:331–357.
  38. Bachert C, Gevaert P, van Cauwenberge P. Staphylococcus aureus enterotoxins: A key in airway disease? Allergy. 2002;57(6):480–487.
  39. van der Merwe R, Molfino NA. Challenge models to assess new therapies in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2012;7:597–605.
  40. Obradovic D, Gronemeyer H, Lutz B, Rein T. Cross-talk of vitamin D and glucocorticoids in hippocampal cells. J Neurochem. 2006;96(2):500–509.