Advances in Clinical and Experimental Medicine
2020, vol. 29, nr 2, February, p. 183–188
doi: 10.17219/acem/114762
Publication type: original article
Language: English
License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Download citation:
Cerebrovascular reactivity and disease activity in relapsing-remitting multiple sclerosis
1 Second Department of Neurology, Institute of Psychiatry and Neurology, Warszawa, Poland
Abstract
Background. In multiple sclerosis (MS), insufficient blood supply might worsen energy deficiency of the brain tissue. Thus, cerebrovascular reactivity (CVR), which is the capacity of cerebral circulation to match blood supply to metabolic demand, might be important in MS pathology.
Objectives. The objective of this study was to investigate the relationship of CVR to disease activity and neuroimaging markers of disease progression in patients with MS.
Material and Methods. In 43 patients with relapsing remitting MS (RRMS) in clinical remission, 30 patients with a relapse of MS and 30 healthy controls, we measured CVR with transcranial Doppler as a relative change in flow velocity after breath-holding (breath-holding index) and voluntary hyperventilation (hyperventilation index). All patients in remission underwent brain magnetic resonance imaging at baseline and 33 underwent repeated imaging after 12 months, with various brain volume measurements taken.
Results. Cerebrovascular reactivity indices did not differ between patients in remission, patients with a relapse and controls. In patients in remission, CVR did not differ between those with or without contrast-enhancing lesions. In patients with a relapse, glucocorticoids significantly reduced both CVR indices. Cerebrovascular reactivity was not related to brain volume, white matter lesion volume, percent brain volume change, and the change in total white matter lesion volume.
Conclusion. In RRMS, CVR appeared normal and unrelated to disease activity. There was no substantial association of CVR to brain atrophy and accumulation of white matter lesions.
Key words
multiple sclerosis, brain atrophy, cerebral blood flow, cerebrovascular reactivity, transcranial Doppler ultrasonography
References (38)
- Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–193. doi:10.1016/S1474-4422(14)70256-X
- Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018;8(3):a028936. doi:10.1101/cshperspect.a028936
- D’haeseleer M, Hostenbach S, Peeters I, et al. Cerebral hypoperfusion: A new pathophysiologic concept in multiple sclerosis? J Cereb Blood Flow Metab. 2015;35(9):1406–1410. doi:10.1038/jcbfm.2015.131
- Holland CM, Charil A, Csapo I, et al. The relationship between normal cerebral perfusion patterns and white matter lesion distribution in 1,249 patients with multiple sclerosis. J Neuroimaging. 2012;22(2):129–136. doi:10.1111/j.1552-6569.2011.00585.x
- Narayana PA, Zhou Y, Hasan KM, Datta S, Sun X, Wolinsky JS. Hypoperfusion and T1-hypointense lesions in white matter in multiple sclerosis. Mult Scler. 2014;20(3):365–373. doi:10.1177/1352458513495936
- Haider L, Zrzavy T, Hametner S, et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139(Pt 3):807–815. doi:10.1093/brain/awv398
- Desai RA, Davies AL, Tachrount M, et al. Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann Neurol. 2016;79(4):591–604. doi:10.1002/ana.24607
- Tantucci C, Bottini P, Fiorani C, et al. Cerebrovascular Reactivity and Hypercapnic Respiratory Drive in Diabetic Autonomic Neuropathy. 2001. http://www.jap.org. Accessed June 2, 2019.
- Adamec I, Habek M. Autonomic dysfunction in multiple sclerosis. Clin Neurol Neurosurg. 2013;115(Suppl 1):S73–S78. doi:10.1016/j.clineuro.2013.09.026
- Keage HAD, Churches OF, Kohler M, et al. Cerebrovascular function in aging and dementia: A systematic review of transcranial Doppler studies. Dement Geriatr Cogn Dis Extra. 2012;2(1):258–270. doi: 10.1159/000339234
- Blair GW, Doubal FN, Thrippleton MJ, Marshall I, Wardlaw JM. Magnetic resonance imaging for assessment of cerebrovascular reactivity in cerebral small vessel disease: A systematic review. J Cereb Blood Flow Metab. 2016;36(5):833–841. doi:10.1177/0271678X16631756
- Campbell GR, Worrall JT, Mahad DJ. The central role of mitochondria in axonal degeneration in multiple sclerosis. Mult Scler J. 2014;20(14):1806–1813. doi:10.1177/1352458514544537
- Mandell DM, Han JS, Poublanc J, et al. Selective reduction of blood flow to white matter during hypercapnia corresponds with leukoaraiosis. Stroke. 2008;39(7):1993–1998. doi:10.1161/STROKEAHA.107.501692
- Silvestrini M, Vernieri F, Pasqualetti P, et al. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA. 2000;283(16):2122–2127. http://www.ncbi.nlm.nih.gov/pubmed/10791504. Accessed August 6, 2018.
- Khorvash F, Masaeli A, Shaygannejad V, Saadatnia M. Vasomotor reactivity comparison in multiple sclerosis patients with white matter lesions and nonmultiple sclerosis subjects with white matter lesions in brain magnetic resonance imaging. Adv Biomed Res. 2016;5:23. doi:10.4103/2277-9175.175916
- Uzuner N, Ozkan S, Cinar N. Cerebrovascular reactivity in multiple sclerosis patients. Mult Scler J. 2007;13(6):737–741. doi:10.1177/1352458506074645
- Metzger A, Le Bars E, Deverdun J, et al. Is impaired cerebral vasoreactivity an early marker of cognitive decline in multiple sclerosis patients? Eur Radiol. 2018;28(3):1204–1214. doi:10.1007/s00330-017-5068-5
- Marshall O, Lu H, Brisset J-C, et al. Impaired cerebrovascular reactivity in multiple sclerosis. JAMA Neurol. 2014;71(10):1275–1281. doi:10.1001/jamaneurol.2014.1668
- Marshall O, Chawla S, Lu H, Pape L, Ge Y. Cerebral blood flow modulation insufficiency in brain networks in multiple sclerosis: A hypercapnia MRI study. J Cereb Blood Flow Metab. 2016;36(12):2087–2095. doi:10.1177/0271678X16654922
- Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage. 2002;17(1):479–489. http://www.ncbi.nlm.nih.gov/pubmed/12482100. Accessed February 12, 2017.
- Shiee N, Bazin P-L, Ozturk A, Reich DS, Calabresi PA, Pham DL. A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage. 2010;49(2):1524–1535. doi:10.1016/j.neuroimage.2009.09.005
- Catchlove SJ, Pipingas A, Hughes ME, Macpherson H. Magnetic resonance imaging for assessment of cerebrovascular reactivity and its relationship to cognition: A systematic review. BMC Neurosci. 2018;19(1):21. doi:10.1186/s12868-018-0421-4
- Zhou Y, Rodgers ZB, Kuo AH. Cerebrovascular reactivity measured with arterial spin labeling and blood oxygen level dependent techniques. Magn Reson Imaging. 2015;33(5):566–576. doi:10.1016/j.mri.2015.02.018
- Mandell DM, Han JS, Poublanc J, et al. Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in patients with arterial steno-occlusive disease: Comparison with arterial spin labeling MRI. Stroke. 2008;39(7):2021–2028. doi:10.1161/STROKEAHA.107.506709
- Smoliński Ł, Członkowska A. Cerebral vasomotor reactivity in neurodegenerative diseases. Neurol Neurochir Pol. 2016;50(6):455–462. doi:10.1016/j.pjnns.2016.07.011
- Lavi S, Egbarya R, Lavi R, Jacob G. Role of nitric oxide in the regulation of cerebral blood flow in humans chemoregulation versus mechanoregulation. Circulation. 2003;107(14):1901–1905.
- Smith KJ, Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002;1(4):232–241.
- Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: Recent advances. Pharmacol Rev. 2009;61(1):62–97. doi:10.1124/pr.108.000547
- Meadows GE, Kotajima F, Vazir A, et al. Overnight changes in the cerebral vascular response to isocapnic hypoxia and hypercapnia in healthy humans: Protection against stroke. Stroke. 2005;36(11):2367–2372. doi:10.1161/01.STR.0000185923.49484.0f
- Sweazea KL, Lekic M, Walker BR. Comparison of mechanisms involved in impaired vascular reactivity between high sucrose and high fat diets in rats. Nutr Metab (Lond). 2010;7(1):48. doi:10.1186/1743-7075-7-48
- Ohl K, Tenbrock K, Kipp M. Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp Neurol. 2016;277:58–67. doi:10.1016/j.expneurol.2015.11.010
- Chung CC, Pimentel D, Jor’dan AJ, Hao Y, Milberg W, Novak V. Inflammation-associated declines in cerebral vasoreactivity and cognition in type 2 diabetes. Neurology. 2015;85(5):450–458. doi:10.1212/WNL.0000000000001820
- Yang S, Zhang L. Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol. 2004;2(1):1–12. http://www.ncbi.nlm.nih.gov/pubmed/15320828. Accessed June 23, 2018.
- Mackowiak PA, Siegel E, Wasserman SS, Cameron E, Nessaiver MS, Bever CC. Effects of IFN-β on human cerebral blood flow distribution. J Interf Cytokine Res. 1998;18(6):393–397. doi:10.1089/jir.1998.18.393
- Zivadinov R, Locatelli L, Cookfair D, et al. I nterferon beta-1a slows progression of brain atrophy in relapsing-remitting multiple sclerosis predominantly by reducing gray matter atrophy. Mult Scler J. 2007;13(4):490–501. doi:10.1177/1352458506070446
- Fierstra J, Sobczyk O, Battisti-Charbonney A, et al. Measuring cerebrovascular reactivity: What stimulus to use? J Physiol. 2013;591(23):5809–5821. doi:10.1113/jphysiol.2013.259150
- Kastrup A, Krüger G, Neumann-Haefelin T, Moseley ME. Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: Comparison of CO2 and breath holding. Magn Reson Imaging. 2001;19(1):13–20.
- Herrera CRC, Beltramini GC, Avelar WM, Lima FO, Li LM. Cerebral vasomotor reactivity assessment using transcranial Doppler and MRI with apnea test. Brazilian J Med Biol Res. 2016;49(11):e5437.