Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.4)
Index Copernicus  – 161.11; MEiN – 140 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 12, December, p. 1433–1441

doi: 10.17219/acem/128233

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Salmonella Typhimurium enolase-like membrane protein is recognized by antibodies against human enolase and interacts with plasminogen

Paweł Serek1,A,B,C,D,E,F, Iwona Bednarz-Misa1,A,C,D,E,F, Jadwiga Pietkiewicz1,C,E, Bartłomiej Dudek2,C,E, Magdalena Mierzchała-Pasierb1,D,E, Katarzyna Jermakow3,B, Marek Drab4,B, Andrzej Gamian1,5,E,F

1 Department of Medical Biochemistry, Wroclaw Medical University, Poland

2 Department of Microbiology, Faculty of Biological Sciences, University of Wrocław, Poland

3 Department of Microbiology, Wroclaw Medical University, Poland

4 Unit of Nano-Structural Bio-Interactions, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland

5 Medical Microbiology Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland

Abstract

Background. Enolase is generally known as the glycolytic pathway enzyme present in the cytoplasm of eukaryotic cells and in some microorganisms. In human cells, it is also a component of cell surface membranes, where it functions as a human plasminogen receptor.
Objectives. The study aimed to purify Salmonella enterica serovar Typhimurium cytosolic enolase and obtain the antibodies against this protein; to identify enolase on the surface of bacteria; and to find cross-reactivity and plasminogen binding properties.
Material and Methods. Cytosolic enolase from S. Typhimurium was purified using a five-step preparation method. Anti-cytosolic enolase antibodies combined with scanning electron microscopy (SEM) allowed us to detect enolase on the surface of intact S. Typhimurium cells. The binding of plasminogen to surface enolase and the cross-reactivity of this protein with antibodies against human enolases were tested with western blot.
Results. Antibodies against human α- and β-enolases cross-reacted with S. Typhimurium membrane protein, the identity of which was further confirmed using a mass spectrometry analysis of enolase tryptic peptides. The enolase form bacterial membrane also bound plasminogen.
Conclusion. The cross-reactivity of membrane enolase with antibodies against human enolases suggests that this bacterium shares epitopes with human proteins. Surface exposition of enolase and the demonstrated affinity for human plasminogen indicates that Salmonella membrane enolase could play a role in the interaction of S. Typhimurium with host cells.

Key words

membrane proteins, Salmonella, Typhimurium, enolase

References (40)

  1. Cook J, Jeuland M, Whittington D, et al; DOMI Typhoid Economics Study Group. The cost-effectiveness of typhoid Vi vaccination programs: Calculations for four urban sites in four Asian countries. Vaccine. 2008;26(50):6305–6316. doi:10.1016/j.vaccine.2008.09.040
  2. World Health Organization. Food safety. https://www.who.int/news-room/fact-sheets/detail/food-safety. Accessed June 30, 2020.
  3. Popoff MY, Bockemühl J, Gheesling LL. Supplement 2002 (No. 46) to the Kauffmann–White scheme. Res Microbiol. 2004;155(7):568–570. doi:10.1016/j.resmic.2004.04.005
  4. World Health Organization. Salmonella (non-typhoidal). https://www.who.int/en/news-room/fact-sheets/detail/salmonella-(non-typhoidal). Accessed June 30, 2020.
  5. de Jong HK, Parry CM, van der Poll T, Wiersinga WJ. Host-pathogen interaction in invasive salmonellosis. PLoS Pathog. 2012;8(10):e1002933. doi:10.1371/journal.ppat.1002933
  6. Alam J, Kim YC, Choi Y. Potential role of bacterial infection in autoimmune diseases: A new aspect of molecular mimicry. Immune Netw. 2014;14(1):7–13. doi:10.4110/in.2014.14.1.7
  7. Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol Microbiol. 2000;37(2):239–253. doi:10.1046/j.1365-2958.2000.01983.x
  8. Pancholi V. Multifunctional α-enolase: Its role in diseases. Cell Mol Life Sci. 2001;58(7):902–920. doi:10.1007/PL00000910
  9. López-Alemany R, Longstaff C, Hawley S, et al. Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-enolase. Am J Hematol. 2003;72(4):234–242. doi:10.1002/ajh.10299
  10. Díaz-Ramos À, Roig-Borrellas A, García-Melero A, López-Alemany R. α-enolase, a multifunctional protein: Its role on pathophysiological situations. J Biomed Biotechnol. 2012;2012:156795. doi:10.1155/2012/156795
  11. Kolberg J, Aase A, Bergmann S, et al. Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface. Microbiology (Reading). 2006;152(Pt 5):1307–1317. doi:10.1099/mic.0.28747-0
  12. Witkowska D, Pietkiewicz J, Szostko B, Danielewicz R, Masłowski L, Gamian A. Antibodies against human muscle enolase recognize a 45-kDa bacterial cell wall outer membrane enolase-like protein. FEMS Immunol Med Microbiol. 2005;45(1):53–62. doi:10.1016/j.femsim.2005.01.005
  13. Lis J, Jarząb A, Witkowska D. Molecular mimicry in the etiology of autoimmune diseases. Postepy Hig Med Dosw (Online). 2012;66:475–491. doi:10.5604/17322693.1003484
  14. Lee KH, Chung HS, Kim HS, et al. Human alpha-enolase from endothelial cells as a target antigen of anti-endothelial cell antibody in Behçet’s disease. Arthritis Rheum. 2003;48(7):2025–2035. doi:10.1002/art.11074
  15. Fujii A, Yoneda M, Ito T, et al. Autoantibodies against the amino terminal of α-enolase are a useful diagnostic marker of Hashimoto’s encephalopathy. J Neuroimmunol. 2005;162(1–2):130–136. doi:10.1016/j.jneuroim.2005.02.004
  16. Nezos A, Cinoku I, Mavragani CP, Moutsopoulos HM. Antibodies against citrullinated alpha enolase peptides in primary Sjogren’s syndrome. Clin Immunol. 2017;183:300–303. doi:10.1016/J.CLIM.2017.09.012
  17. Bednarz-Misa I, Pietkiewicz J, Banaś T, Gamian A. Enolase from Klebsiella pneumoniae and human muscle cells. I. Purification and comparative molecular studies. Adv Clin Exp Med. 2009;18(1):71–78.
  18. Wold F. Enolase. In: Boyer PD, ed. The Enzymes, 3rd edition, vol. V. New York, NY, USA: Academic Press; 1971: 499-538.
  19. Baranowski T, Wolna E. Enolase from human muscle. Methods Enzymol. 1975;42(C):335–338. doi:10.1016/0076-6879(75)42137-1
  20. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685. doi:10.1038/227680a0
  21. Bugla-Płoskońska G, Futoma-Kołoch B, Skwara A, Doroszkiewicz W. Use of zwitterionic type of detergent in isolation of Escherichia coli O56 outer membrane proteins improves their two-dimensional electrophoresis (2-DE). Polish J Microbiol. 2009;58(3):205–209.
  22. Gromova I. Protein detection in gels by silver staining: A procedure compatible with mass spectrometry. Cell Biol. 2006;4:219–223. doi:10.1016/B978-012164730-8/50212-4
  23. Malinowska A, Kistowski M, Bakun M, et al. Diffprot: Software for non-parametric statistical analysis of differential proteomics data. J Proteomics. 2012;75(13):4062–4073. doi:10.1016/J.JPROT.2012.05.030
  24. Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, et al. Mammalian host-versus-phage immune response determines phage fate in vivo. Sci Rep. 2015;5:14802. doi:10.1038/srep14802
  25. Drab M, Krajniak J, Grzelakowski KP. The new methodology and chemical contrast observation by use of the energy-selective back-scattered electron detector. Microsc Microanal. 2016;22(6):1369–1373. doi:10.1017/S1431927616012514
  26. Saito N. Purification and properties of bacterial phosphopyruvate hydratase. J Biochem. 1967;61(1):59–69. doi:10.1093/oxfordjournals.jbchem.a128521
  27. Esgleas M, Li Y, Hancock MA, Harel J, Dubreuil JD, Gottschalk M. Isolation and characterization of α-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology. 2008;154(9):2668–2679. doi:10.1099/mic.0.2008/017145-0
  28. Dannelly HK, Reeves HC. Purification and characterization of enolase from Escherichia coli. Curr Microbiol. 1988;17(5):265–268. doi:10.1007/BF01571326
  29. Lee A, Kim YC, Baek K, et al. Treponema denticola enolase contributes to the production of antibodies against ENO1 but not to the progression of periodontitis. Virulence. 2018;9(1):1263–1272. doi:10.1080/21505594.2018.1496775
  30. Floden AM, Watt JA, Brissette CA. Borrelia burgdorferi enolase is a surface-exposed plasminogen binding protein. PLoS One. 2011;6(11):e27502. doi:10.1371/journal.pone.0027502
  31. Yavlovich A, Rechnitzer H, Rottem S. Alpha-enolase resides on the cell surface of Mycoplasma fermentans and binds plasminogen. Infect Immun. 2007;75(12):5716–5719. doi:10.1128/IAI.01049-07
  32. Ceremuga I, Seweryn E, Bednarz-Misa I, et al. Enolase-like protein present on the outer membrane of Pseudomonas aeruginosa binds plasminogen. Folia Microbiol (Praha). 2014;59(5):391–397. doi:10.1007/s12223-014-0311-9
  33. Dobrut A, Brzozowska E, Górska S, et al. Epitopes of immunoreactive proteins of Streptococcus agalactiae: Enolase, inosine 5’-monophosphate dehydrogenase and molecular chaperone GroEL. Front Cell Infect Microbiol. 2018;8:349. doi:10.3389/fcimb.2018.00349
  34. Lundberg K, Wegner N, Yucel-Lindberg T, Venables PJ. Periodontitis in RA: The citrullinated enolase connection. Nat Rev Rheumatol. 2010;6(12):727–730. doi:10.1038/nrrheum.2010.139
  35. Rohekar S, Tsui FWL, Tsui HW, et al. Symptomatic acute reactive arthritis after an outbreak of salmonella. J Rheumatol. 2008;35(8):1599–1602. http://www.ncbi.nlm.nih.gov/pubmed/18528961. Accessed June 30, 2020.
  36. Axelrad JE, Olén O, Askling J, et al. Gastrointestinal infection increases odds of inflammatory bowel disease in a nationwide case-control study. Clin Gastroenterol Hepatol. 2018. doi:10.1016/J.CGH.2018.09.034
  37. Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S. Alpha-enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol. 2001;40(6):1273–1287. doi:10.1046/j.1365-2958.2001.02448.x
  38. Pancholi V, Fischetti VA. Alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem. 1998;273(23):14503–14515. doi:10.1074/jbc.273.23.14503
  39. Redlitz A, Fowler BJ, Plow EF, Miles LA. The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem. 1995;227(1–2):407–415. doi:10.1111/j.1432-1033.1995.tb20403.x
  40. Candela M, Biagi E, Centanni M, et al. Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology (Reading). 2009;155(10):3294–3303. doi:10.1099/mic.0.028795-0