Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 10, October, p. 1205–1210

doi: 10.17219/acem/126049

Publication type: review article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Clinical value of soluble ST2 in cardiology

Magdalena Dudek1,A,B,D,F, Marta Kałużna-Oleksy1,B,D, Jacek Migaj1,B,D, Ewa Straburzyńska-Migaj1,A,D,E,F

1 1st Department of Cardiology, Poznan University of Medical Sciences, Poland


We are constantly looking for new parameters and markers that can help in the assessment of patients with various diseases, including cardiac disorders; this can translate into better care and improved prognosis. Suppression of tumorigenicity 2 (ST2) has recently gained interest as a potential biomarker in many fields: it is involved in many inflammatory diseases and allergies, including asthma, rheumatoid arthritis and inflammatory bowel disease, and it participates in cardiovascular pathophysiology. Suppression of tumorigenicity 2 is being investigated as a promising biomarker in heart diseases. The interaction of interleukin 33 (IL-33) and ST2L is part of a cardioprotective pathway that prevents fibrosis and inhibits inflammatory response, hypertrophy and apoptosis of cardiomyocytes. In this review, we try to summarize the current knowledge about the usefulness of soluble ST2 (sST2) in cardiology. Clinical data show promising results for the possibility of using sST2 in various diseases, such as arrhythmia, hypertension, myocarditis, acute aortic syndrome, and coronary artery disease (CAD). This novel biomarker may also play a role in heart transplantation and perioperative care.

Key words

heart, biomarker, ST2, cardiac biomarkers, sST2

References (50)

  1. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. doi:10.1067/mcp.2001.113989
  2. Tominaga S. A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett. 1989;258(2):301–304. doi:10.1016/0014-5793(89)81679-5
  3. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–490. doi:10.1016/j.immuni.2005.09.015
  4. Tominaga S, Kuroiwa K, Tago K, Iwahana H, Yanagisawa K, Komatsu N. Presence and expression of a novel variant form of ST2 gene product in human leukemic cell line UT-7/GM. Biochem Biophys Res Commun. 1999;264(1):14–18. doi:10.1006/bbrc.1999.1469
  5. Iwahana H, Hayakawa M, Kuroiwa K, et al. Molecular cloning of the chicken ST2 gene and a novel variant form of the ST2 gene product, ST2LV. Biochim Biophys Acta. 2004;1681(1):1–14. doi:10.1016/j.bbaexp.2004.08.013
  6. Ciccone MM, Cortese F, Gesualdo M, et al. A novel cardiac bio-marker: ST2. A review. Molecules. 2013;18(12):15314–15328. doi:10.3390/molecules181215314
  7. Mirchandani AS, Salmond RJ, Liew FY. Interleukin-33 and the function of innate lymphoid cells. Trends Immunol. 2012;33(8):389–396. doi:10.1016/
  8. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: The new kid in the IL-1 family. Nat Rev Immunol. 2010;10(2):103–110. doi:10.1038/nri2692
  9. Li R, Yang G, Yang R, Peng X, Li J. Interleukin-33 and receptor ST2 as indicators in patients with asthma: A meta-analysis. Int J Clin Exp Med. 2015;8(9):14935–14943.
  10. Shi LJ, Liu C, Li JH, Zhu XY, Li YN, Li JT. Elevated levels of soluble ST2 were associated with rheumatoid arthritis disease activity and ameliorated inflammation in synovial fibroblasts. Chin Med J (Engl). 2018;131(3):316–322. doi:10.4103/0366-6999.223847
  11. Boga S, Alkim H, Koksal AR, et al. Serum ST2 in inflammatory bowel disease: A potential biomarker for disease activity. J Investig Med. 2016;64(5):1016–1024. doi:10.1136/jim-2016-000062
  12. Weinberg EO, Shimpo M, De Keulenaer GW, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–2966. doi:10.1161/01.cir.0000038705.69871.d9
  13. Bartunek J, Delrue L, Van Durme F, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008;52(25):2166–2174. doi:10.1016/j.jacc.2008.09.027
  14. Kakkar R, Lee RT. The IL-33/ST2 pathway: Therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008;7(10):827–840. doi:10.1038/nrd2660
  15. Shimpo M, Morrow DA, Weinberg EO, et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation. 2004;109(18):2186–2190. doi:10.1161/01.CIR.0000127958.21003.5A
  16. Hartopo AB, Sukmasari I, Puspitawati I. The utility of point of care test for soluble ST2 in predicting adverse cardiac events during acute care of ST-segment elevation myocardial infarction. Cardiol Res Pract. 2018;2018:1–9. doi:10.1155/2018/3048941
  17. O’Donoghue ML, Morrow DA, Cannon CP, et al. Multimarker risk stratification in patients with acute myocardial infarction. J Am Heart Assoc. 2016;5(5):e002586. doi:10.1161/JAHA.115.002586
  18. Somuncu MU, Kalayci B, Avci A, et al. Predicting long-term cardiovascular outcomes of patients with acute myocardial infarction using soluble ST2. Horm Mol Biol Clin Investig. 2020;41(2):/j/hmbci.2020.41.issue-2/hmbci-2019-0062/hmbci-2019-0062.xml. doi:10.1515/hmbci-2019-0062
  19. Bière L, Garcia G, Guillou S, et al. ST2 as a predictor of late ventricular remodeling after myocardial infarction. Int J Cardiol. 2018;259:40–42. doi:10.1016/j.ijcard.2018.02.058
  20. Liu X, Hu Y, Huang W, et al. Soluble ST2 for prediction of clinical outcomes in patients with ST-segment elevation myocardial infarction receiving primary PCI. Int Heart J. 2019;60(1):19–26. doi:10.1536/ihj.18-020
  21. Dieplinger B, Egger M, Haltmayer M, et al. Increased soluble ST2 predicts long-term mortality in patients with stable coronary artery disease: Results from the Ludwigshafen Risk and Cardiovascular Health Study. Clin Chem. 2014;60(3):530–540. doi:10.1373/clinchem.2013.209858
  22. Zhang Y, Fan Z, Liu H, et al. Correlation of plasma soluble suppression of tumorigenicity-2 level with the severity and stability of coronary atherosclerosis. Coron Artery Dis. 2020;31(7):628–635. doi:10.1097/MCA.0000000000000851
  23. Wang Y, Tan X, Gao H, et al. Magnitude of soluble ST2 as a novel biomarker for acute aortic dissection. Circulation. 2018;137(3):259–269. doi:10.1161/CIRCULATIONAHA.117.030469
  24. Morello F, Bartalucci A, Bironzo M, et al. Prospective diagnostic accuracy study of plasma soluble ST2 for diagnosis of acute aortic syndromes. Sci Rep. 2020;10:3103. doi:10.1038/s41598-020-59884-6
  25. Coronado MJ, Bruno KA, Blauwet LA, et al. Elevated sera sST2 is associated with heart failure in men ≤50 years old with myocarditis. J Am Heart Assoc. 2019;8(2):e008968. doi:10.1161/JAHA.118.008968
  26. Coglianese EE, Larson MG, Vasan RS, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem. 2012;58(12):1673–1681. doi:10.1373/clinchem.2012.192153
  27. Ojji DB, Opie LH, Lecour S, Lacerda L, Adeyemi OM, Sliwa K. The effect of left ventricular remodeling on soluble ST2 in a cohort of hypertensive subjects. J Hum Hypertens. 2014;28(7):432–437. doi:10.1038/jhh.2013.130
  28. Farcaş AD, Anton FP, Goidescu CM, et al. Serum soluble ST2 and diastolic dysfunction in hypertensive patients. Dis Markers. 2017;2017:2714095. doi:10.1155/2017/2714095
  29. Chen C, Qu X, Gao Z, et al. Soluble ST2 in patients with nonvalvular atrial fibrillation and prediction of heart failure. Int Heart J. 2018;59(1):58–63. doi:10.1536/ihj.16-520
  30. Nortamo S, Ukkola O, Lepojärvi S, et al. Association of sST2 and hs-CRP levels with new-onset atrial fibrillation in coronary artery disease. Int J Cardiol. 2017;248:173–178. doi:10.1016/j.ijcard.2017.07.022
  31. Okar S, Kaypakli O, Şahin DY, Koç M. Fibrosis marker soluble ST2 predicts atrial fibrillation recurrence after cryoballoon catheter ablation of nonvalvular paroxysmal atrial fibrillation. Korean Circ J. 2018;48(10):920–929. doi:10.4070/kcj.2018.0047
  32. Ibrahim NE, Lyass A, Gaggin HK, et al. Predicting new‐onset HF in patients undergoing coronary or peripheral angiography: Results from the Catheter Sampled Blood Archive in Cardiovascular Diseases (CASABLANCA) study. ESC Heart Fail. 2018;5(3):240–248. doi:10.1002/ehf2.12268
  33. Mueller T, Jaffe AS. Soluble ST2: Analytical considerations. Am J Cardiol. 2015;115(7 Suppl):8B–21B. doi:10.1016/j.amjcard.2015.01.035
  34. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776–803. doi:10.1016/j.jacc.2017.04.025
  35. Januzzi JL, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: Results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50(7):607–613. doi:10.1016/j.jacc.2007.05.014
  36. Mueller T, Dieplinger B, Gegenhuber A, Poelz W, Pacher R, Haltmayer M. Increased plasma concentrations of soluble ST2 are predictive for 1-year mortality in patients with acute destabilized heart failure. Clin Chem. 2008;54(4):752–756. doi:10.1373/clinchem.2007.096560
  37. Boisot S, Beede J, Isakson S, et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. J Card Fail. 2008;14(9):732–738. doi:10.1016/j.cardfail.2008.06.415
  38. Demissei BG, Cotter G, Prescott MF, et al. A multimarker multi-time point-based risk stratification strategy in acute heart failure: Results from the RELAX-AHF trial. Eur J Heart Fail. 2017;19(8):1001–1010. doi:10.1002/ejhf.749
  39. van Vark LC, Lesman-Leegte I, Baart SJ, et al; TRIUMPH Investigators. Prognostic value of serial ST2 measurements in patients with acute heart failure. J Am Coll Cardiol. 2017;70(19):2378–2388. doi:10.1016/j.jacc.2017.09.026
  40. Pascual-Figal DA, Ordoñez-Llanos J, Tornel PL, et al; MUSIC Investigators. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J Am Coll Cardiol. 2009;54(23):2174–2179. doi:10.1016/j.jacc.2009.07.041
  41. Bayes-Genis A, Zhang Y, Ky B. ST2 and patient prognosis in chronic heart failure. Am J Cardiol. 2015;115(7 Suppl):64B–69B. doi:10.1016/j.amjcard.2015.01.043
  42. Lupón J, de Antonio M, Vila J, et al. Development of a novel heart failure risk tool: The Barcelona Bio-Heart Failure Risk Calculator (BCN bio-HF Calculator). PLoS One. 2014;9(1):e85466. doi:10.1371/journal.pone.0085466
  43. Emdin M, Aimo A, Vergaro G, et al. sST2 predicts outcome in chronic heart failure beyond NT−proBNP and high-sensitivity troponin T. J Am Coll Cardiol. 2018;72(19):2309–2320. doi:10.1016/j.jacc.2018.08.2165
  44. Wojciechowska C, Romuk E, Nowalany-Kozielska E, Jacheć W. Serum galectin-3 and ST2 as predictors of unfavorable outcome in stable dilated cardiomyopathy patients. Hellenic J Cardiol. 2017;58(5):350–359. doi:10.1016/j.hjc.2017.03.006
  45. Gaggin HK, Motiwala S, Bhardwaj A, Parks KA, Januzzi JL Jr. Soluble concentrations of the interleukin receptor family member ST2 and β-blocker therapy in chronic heart failure. Circ Heart Fail. 2013;6(6):1206–1213. doi:10.1161/CIRCHEARTFAILURE.113.000457
  46. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of soluble ST2 in the Valsartan Heart Failure Trial. Circ Heart Fail. 2014;7(3):418–426. doi:10.1161/CIRCHEARTFAILURE.113.001036
  47. Pascual-Figal DA, Pérez-Martínez MT, Asensio-Lopez MC, et al. Pulmonary production of soluble ST2 in heart failure. Circ Heart Fail. 2018;11(12):e005488. doi:10.1161/CIRCHEARTFAILURE.118.005488
  48. Patel DM, Thiessen-Philbrook H, Brown JR, et al. Association of plasma-soluble ST2 and galectin-3 with cardiovascular events and mortality following cardiac surgery. Am Heart J. 2020;220:253–263. doi:10.1016/j.ahj.2019.11.014
  49. Mathews LR, Lott JM, Isse K, et al. Elevated ST2 distinguishes incidences of pediatric heart and small bowel transplant rejection. Am J Transplant. 2016;16(3):938–950. doi:10.1111/ajt.13542
  50. Grupper A, Abou Ezzeddine OF, Maleszewski JJ, et al. Elevated ST2 levels are associated with antibody-mediated rejection in heart transplant recipients. Clin Transplant. 2018;32(9):e13349. doi:10.1111/ctr.13349