Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2020, vol. 29, nr 1, January, p. 123–133

doi: 10.17219/acem/110313

Publication type: original article

Language: English

License: Creative Commons Attribution 3.0 Unported (CC BY 3.0)

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Long-term follow-up of implantable cardioverter-defibrillators in children: Indications and outcomes

Joanna Kwiatkowska1,A,B,C,D,F, Szymon Budrejko2,B,F, Marek Wasicionek3,B,C,D, F Jarosław Meyer-Szary1,C,F, Andrzej Lubinski4,B,C,F, Maciej Kempa2,B,D,E,F

1 Department of Pediatric Cardiology and Congenital Heart Defect, Medical University of Gdansk, Poland

2 2nd Department of Cardiology and Electrotherapy, Medical University of Gdansk, Poland

3 1st Department and Clinic of Pediatric, Allergology and Cardiology, Wroclaw Medical University, Poland

4 Department of Interventional Cardiology and Cardiac Arrhythmias, Medical University of Lodz, Poland

Abstract

Background. Validation data of the use of implantable cardioverter-defibrillators (ICD) in the pediatric population is insufficient, with limited follow-up periods.
Objectives. The aim of the study was to report on 17 years of experience with implantable cardioverter-defibrillator (ICD) therapy in children and young adults.
Material and Methods. This retrospective review included patients below the age of 18 years at the time of ICD implantation between May 2000 and December 2017. For the statistical analysis, the sample was divided into groups by gender and the type of indications for ICD implantation (primary vs secondary prevention).
Results. The study group included 20 children (8 female, 12 male) who underwent ICD implantation for primary or secondary prevention of sudden cardiac death (SCD). The average age at the time of the initial procedure was 15.6 years (range: 3.8–17.7 years). Primary electrical disease (PED) was present in 9 patients, cardiomyopathy (CMP) in 9 and 2 others had congenital heart defects (CHDs). The median follow-up time was 6.7 years (range: 0.4–12.5 years). The outcomes of ICD therapy were analyzed. No differences between the sexes were found in terms of treatment strategy effectiveness (p > 0.05). The girls were more often treated as primary prevention (p = 0.009). After implantation, all the patients were on optimal pharmacotherapy. Alltogether there were 126 ICD interventions in 11 patients, including 23 inadequate interventions (IA) in 2 children (18.2%).Three children (15%) died due to electrical storms. In the per-procedure analysis, the overall freedom rate from ICD lead replacement was 90%, 80% and 57% at 1, 5 and 10 years of observation, respectively.
Conclusion. Implantable cardioverter-defibrillator implantation indications in children are more heterogeneous in comparison to adult population. In the pediatric population undergoing ICD implantation, the treatment strategy is influenced by gender. The rate of inappropriate ICD discharges (IA) in our group of pediatric patients was low. Rigorous pharmacotherapy and individual ICD programming seemed of paramount importance. Lead malfunctions LF constituted the most prevalent complication observed.

Key words

sudden cardiac death, implantable cardioverter-defibrillator, pediatric cardiology

References (40)

  1. Chang PM, Powell BD, Jones PW, Carter N, Hayes DL, Saxon LA. Implantable cardioverter defibrillator programming characteristics, shocked rhythms, and survival among patients under thirty years of age. J Cardiovasc Electrophysiol. 2016;27(10):1183–1190. doi:10.1111/jce.13038
  2. Wilkoff BL, Fauchier L, Stiles MK, et al. Erratum to ‘2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing’. J Arrhythmia. 2016;32(5):441–442. doi:10.1016/j.joa.2016.08.001
  3. Migowski A, Ribeiro AL, Carvalho MS, et al. Seven years of use of implantable cardioverter-defibrillator therapies: A nationwide population-based assessment of their effectiveness in real clinical settings. BMC Cardiovasc Disord. 2015;15:22. doi:10.1186/s12872-015-0016-2
  4. Priori SG, Blomström-Lundqvist C. 2015 European Society of Cardiology Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death summarized by co-chairs. Eur Heart J. 2015;36(41):2757–2759. doi:10.1093/eurheartj/ehv445
  5. Santharam S, Hudsmith L, Thorne S, Clift P, Marshall H, De Bono J. Long-term follow-up of implantable cardioverter-defibrillators in adult congenital heart disease patients: Indications and outcomes. Europace. 2017;19(3):407–413. doi:10.1093/europace/euw076
  6. Blom NA. Implantable cardioverter-defibrillators in children. Pacing Clin Electrophysiol. 2008;31(Suppl 1):S32–S34. doi:10.1111/j.1540-8159.2008.00952
  7. Cheitlin MD, Conill A, Epstein AE, et al. ACC/AHA Guidelines for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Pacemaker Implantation). Circultion. 1998;97(13):1325–1335. doi:10.1016/S0735-1097(98)00024-2
  8. Asakai H, Shimizu A, Mitsuhashi T, et al; Members of the Implantable Cardioverter-Defibrillator (ICD) Committee of the Japanese Heart Rhythm Society. Current trends in implantable cardioverter-defibrillator therapy in children: Results from the JCDTR database. Circ J. 2018;83(1):52–55. doi:10.1253/circj.CJ-18-0712
  9. Bogush N, Espinosa RE, Cannon BC, et al. Selecting the right defibrillator in the younger patient: Transvenous, epicardial or subcutaneous? Int J Cardiol. 2018;250:133–138. doi:10.1016/j.ijcard.2017.09.213
  10. Krause U, Müller MJ, Wilberg Y, et al. Transvenous and non-transvenous implantable cardioverter-defibrillators in children, adolescents, and adults with congenital heart disease: Who is at risk for appropriate and inappropriate shocks? EP Eur. 2018;21(1):106–113. doi:10.1093/europace/euy219
  11. Walsh EP, Cecchin F. Recent advances in pacemaker and implantable defibrillator therapy for young patients. Curr Opin Cardiol. 2004;19(2):91–96. doi:10.1097/00001573-200403000-00004
  12. Adams KF, Baughman KL, Dec WG, et al. Heart Failure Society of America (HFSA) guidelines for management of patients with heart failure caused by left ventricular systolic dysfunction-pharmacological approaches. Pharmacotherapy. 2000;20:495–522.
  13. Heersche JHM, Blom NA, Van De Heuvel F, et al. Implantable cardioverter defibrillator therapy for prevention of sudden cardiac death in children in the Netherlands. Pacing Clin Electrophysiol. 2010;33(2):179–185. doi:10.1111/j.1540-8159.2009.02603
  14. Kral MA, Spotnitz HM, Hordof A, Bigger JT, Steinberg JS, Livelli FD. Automatic implantable cardioverter defibrillator implantation for malignant ventricular arrhythmias associated with congential heart disease. Am J Cardiol. 1989;63(1):118–119. doi:10.1016/0002-9149(89)91093-x
  15. Baysa SJA, Olen M, Kanter RJ, Fishberger SB. Defibrillation testing strategies of pediatric and adult congenital electrophysiologists during ICD implantation. Pacing Clin Electrophysiol. 2016;39(8):843–847. doi:10.1111/pace.12896
  16. Dickstein K, Cohen-Solal A, Filippatos G, et al; ESC Committee for Practice Guidelines (CPG). ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J. 2016;29(19):2388–2442. doi:10.1093/eurheartj/ehn309
  17. Kamphuis VP, Blom NA, van Zwet EW, et al. Normal values of the ventricular gradient and QRS-T angle, derived from the pediatric electrocardiogram. J Electrocardiol. 2018;51(3):490–495. doi:10.1016/j.electrocard.2018.01.002
  18. Chair SY, Lee CK, Choi KC, Sears SF. Quality of life outcomes in Chinese patients with implantable cardioverter defibrillators. Pacing Clin Electrophysiol. 2011;34(7):858–867. doi:10.1111/j.1540-8159.2011.03048
  19. Sears SF, Burns JL, Handberg E, Sotile WM, Conti JB. Young at heart: Understanding the unique psychosocial adjustment of young implantable cardioverter defibrillator recipients. Pacing Clin Electro­physiol. 2001;24(7):1113–1117. doi:10.1046/j.1460-9592.2001.01113
  20. Berul CI. Implantable cardioverter-defibrillators in children: Innovation to design a pediatric ICD. J Innov Card Rhythm Manag. 2011;2:179–185.
  21. Maron BJ, Spirito P, Ackerman MJ, et al. Prevention of sudden cardiac death with implantable cardioverter: Defibrillators in children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2013;61(14):1527–1535. doi:10.1016/j.jacc.2013.01.037
  22. Schinkel AFL. Implantable cardioverter defibrillators in arrhythmo­genic right ventricular dysplasia/cardiomyopathy: Patient outcomes, incidence of appropriate and inappropriate interventions, and complications. Circ Arrhythmia Electrophysiol. 2013;6(3):562–568. doi:10.1161/CIRCEP.113.000392
  23. Ciemny S, Kwiatkowska J, Królak T, Kempa M. Nastolatek traci przytomność na ulicy. Folia Cardiol. 2016;11(1):61–65. doi:10.5603/FC.2016.0008
  24. Moss AJ, Schuger C, Beck CA, et al; MADIT-RIT Trial Investigators. Reduction in inappropriate therapy and mortality through ICD programming. N Engl J Med. 2012;367(24):2275–2283. doi:10.1056/NEJMoa1211107
  25. Kriebel T, Ruschewski W, Gonzalez MGY, et al. ICD implantation in infants and small children: The extracardiac technique. Pacing Clin Electrophysiol. 2006;29(12):1319–1325. doi:10.1111/j.1540-8159.2006.00542
  26. Lewandowski M, Sterliński M, MacIg A, et al. Long-term follow-up of children and young adults treated with implantable cardioverter-defibrillator: The authors’ own experience with optimal implantable cardioverter-defibrillator programming. Europace. 2010;12(9):1245–1250. doi:10.1093/europace/euq263
  27. Silvetti MS, Saputo FA, Palmieri R, et al. Results of remote follow-up and monitoring in young patients with cardiac implantable electronic devices. Cardiol Young. 2014;26(1):53–60. doi:10.1017/S1047951114002613
  28. Von Bergen NH, Atkins DL, Dick M, et al. Multicenter study of the effectiveness of implantable cardioverter defibrillators in children and young adults with heart disease. Pediatr Cardiol. 2011;32(4):399–405. doi:10.1007/s00246-010-9866-7
  29. Dechert BE, Bradley DJ, Serwer GA, Dick M, Lapage MJ. Implantable cardioverter defibrillator outcomes in pediatric and congenital heart disease: Time to system revision. Pacing Clin Electrophysiol. 2016;39(7):703–708. doi:10.1111/pace.12878
  30. Malloy LE, Gingerich J, Olson MD, Atkins DL. Remote monitoring of cardiovascular implantable devices in the pediatric population improves detection of adverse events. Pediatr Cardiol. 2014;35(2)301–306. doi:10.1007/s00246-013-0774-5
  31. Khairy P, Mansour F. Implantable cardioverter-defibrillators in congenital heart disease: 10 programming tips. Hear Rhythm. 2011;8(3):480–483. doi:10.1016/j.hrthm.2010.10.046
  32. Walsh EP. Practical aspects of implantable defibrillator therapy in patients with congenital heart disease. Pacing Clin Electrophysiol. 2008;31(Suppl 1):38–40. doi:10.1111/j.1540-8159.2008.00954
  33. Jin BK, Bang JS, Choi EY, et al. Implantable cardioverter defibrillator therapy in pediatric and congenital heart disease patients: A single tertiary center experience in Korea. Korean J Pediatr. 2013;56(3):125–129. doi:10.3345/kjp.2013.56.3.125
  34. Mirowski M, Mower MM, Reid PR. The automatic implantable defibrillator. Am Heart J. 1980;100(6 Pt 2):1089–1092. doi:10.1016/0002-8703(80)90218-5
  35. Bordachar P, Marquié C, Pospiech T, et al. Subcutaneous implantable cardioverter defibrillators in children, young adults and patients with congenital heart disease. Int J Cardiol. 2016;203:251–258. doi:10.1016/j.ijcard.2015.09.083
  36. Garnreiter JM, Pilcher TA, Etheridge SP, Saarel E V. Inappropriate ICD shocks in pediatrics and congenital heart disease patients: Risk factors and programming strategies. Hear Rhythm. 2015;12(5):937–942. doi:10.1016/j.hrthm.2015.01.028
  37. Swerdlow CD, Kalahasty G, Ellenbogen KA. Implantable cardiac defibrillator lead failure and management. J Am Coll Cardiol. 2016;67(11):1358–1368. doi:10.1016/j.jacc.2015.12.067
  38. Frommeyer G, Feder S, Bettin M, et al. Long-term single-center experience of defibrillator therapy in children and adolescents. Int J Cardiol. 2018;271:105–108. doi:10.1016/j.ijcard.2018.05.130
  39. Czosek RJ, Meganathan K, Anderson JB, Knilans TK, Marino BS, Heaton PC. Cardiac rhythm devices in the pediatric population: Utilization and complications. Hear Rhythm. 2012;9(2):199–208. doi:10.1016/j.hrthm.2011.09.004
  40. Von Gunten S, Schaer BA, Yap SC, et al. Longevity of implantable cardioverter defibrillators: A comparison among manufacturers and over time. Europace. 2016;18(5):710–717. doi:10.1093/europace/euv296