Advances in Clinical and Experimental Medicine
2019, vol. 28, nr 6, June, p. 833–838
doi: 10.17219/acem/94148
Publication type: review
Language: English
Download citation:
Circulating and circular RNAs and the need for rationalization and synthesis of the research spiral
1 Department of Biology, Faculty of Medicine in Pilsen, Charles University, Czech Republic
2 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czech Republic
3 Department of Biological Sciences, University of Maryland, Baltimore, USA
Abstract
In this essay, we aim to draw a short comparison between 2 important research topics – circular and circulating RNAs – and show how they are connected. The findings described here in the field of circular RNAs, which are still quite obscured by the rapidly expanding body of knowledge in biology, have added another dimension to our view of the process of gene expression, which is formed by a more complex network of molecule interactions than we previously thought. The term “circulating RNAs” refers to a broad spectrum of RNA fragments originating from different sources, such as physiologically dying cells, sites of inflammation or cancer cells, and fragments floating in human liquid tissues together with other elements. Fragments of nucleic acids circulating in blood are emerging as promising biomarkers in different medical conditions. Interestingly, circular RNAs have been found to be present in human blood and form a fraction of circulating RNAs. In addition to updating readers on these fast-developing areas of biology, we also stress the need for the study of complex networks of molecule interactions as whole structures (in unison with the thoughts of systems biology), as opposed to the trend toward searching for individual key player molecules. Fundamentally, we want to add to the rationalization and synthesis of new research findings in the scientific literature, because this direction is important not only for students, teachers and researchers, but also for the general population.
Key words
synthesis, circular RNA, circulating RNA, complex networks, systems biology
References (35)
- Jeck W, Sorrentino J, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2012;19(2):141–157. doi:10.1261/rna.035667.112
- Salzman J, Gawad C, Wang P, Lacayo N, Brown P. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7(2):e30733. doi:10.1371/journal.pone.0030733
- Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi:10.1038/nature11928
- Fatica A, Bozzoni I. Long non-coding RNAs: New players in cell differentiation and development. Nat Rev Genet. 2013;15(1):7–21. doi:10.1038/nrg3606
- Kung J, Colognori D, Lee J. Long noncoding RNAs: Past, present, and future. Genetics. 2013;193(3):651–669. doi:10.1534/genetics.112.146704
- Barrett S, Salzman J. Circular RNAs: Analysis, expression and potential functions. Development. 2016;143(11):1838–1847. doi:10.1242/dev.128074
- Ebbesen K, Kjems J, Hansen T. Circular RNAs: Identification, biogenesis and function. Biochim Biophys Acta. 2016;1859(1):163–168. doi:10.1016/j.bbagrm.2015.07.007
- Salzman J, Chen R, Olsen M, Wang P, Brown P. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9(9):e1003777. doi:10.1371/journal.pgen.1003777
- Kulcheski F, Christoff A, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 2016;238:42–51. doi:10.1016/j.jbiotec.2016.09.011
- Hansen T, Jensen T, Clausen B, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388. doi:10.1038/nature11993
- Huang S, Yang B, Chen B, et al. The emerging role of circular RNAs in transcriptome regulation. Genomics. 2017;109(5–6):401–407. doi:10.1016/j.ygeno.2017.06.005
- Ashwal-Fluss R, Meyer M, Pamudurti N, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66. doi:10.1016/j.molcel.2014.08.019
- Huang G, Li S, Yang N, Zou Y, Zheng D, Xiao T. Recent progress in circular RNAs in human cancers. Cancer Lett. 2017;404:8–18. doi:10.1016/j.canlet.2017.07.002
- Kristensen L, Hansen T, Venø M, Kjems J. Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 2017;37(5):555–565. doi:10.1038/onc.2017.361
- Zhang H, Jiang L, Sun D, Hou J, Ji Z. CircRNA: A novel type of biomarker for cancer. Breast Cancer. 2017;25(1):1–7. doi:10.1007/s12282-017-0793-9
- Glažar P, Papavasileiou P, Rajewsky N. circBase: A database for circular RNAs. RNA. 2014;20(11):1666–1670. doi:10.1261/rna.043687.113
- Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One. 2015;10(10):e0141214. doi:10.1371/journal.pone.0141214
- Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil. 1948;142(3–4):241–243.
- Vermeesch J, Voet T, Devriendt K. Prenatal and pre-implantation genetic diagnosis. Nat Rev Genet. 2016;17(10):643–656. doi:10.1038/nrg.2016.97
- Volik S, Alcaide M, Morin R, Collins C. Cell-free DNA (cfDNA): Clinical significance and utility in cancer shaped by emerging technologies. Mol Cancer Res. 2016;14(10):898–908. doi:10.1158/1541-7786.mcr-16-0044
- Sorber L, Zwaenepoel K, Deschoolmeester V, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2017;107:100–107. doi:10.1016/j.lungcan.2016.04.026
- Falcon-Perez J, Royo F. Circulating RNA: Looking at the liver through a frosted glass. Biomarkers. 2015;20(6–7):339–354. doi:10.3109/1354750x.2015.1101785
- Jiang P, Lo Y. The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genet. 2016;32(6):360–371. doi:10.1016/j.tig.2016.03.009
- Krug A, Enderle D, Karlovich C, et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann Oncol. 2018;29(3):700–706. doi:10.1093/annonc/mdx765
- Szabo L, Salzman J. Detecting circular RNAs: Bioinformatic and experimental challenges. Nat Rev Genet. 2016;17(11):679–692. doi:10.1038/nrg.2016.114
- Fernandez-Mercado M, Manterola L, Larrea E, et al. The circulating transcriptome as a source of non-invasive cancer biomarkers: Concepts and controversies of non-coding and coding RNA in body fluids. J Cell Mol Med. 2015;19(10):2307–2323. doi:10.1111/jcmm.12625
- Tiberio P, Callari M, Angeloni V, Daidone M, Appierto V. Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int. 2015;2015:1–10. doi:10.1155/2015/731479
- Enuka Y, Lauriola M, Feldman M, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2015;44(3):1370–1383. doi:10.1093/nar/gkv1367
- Breitling R. What is systems biology? Front Physiol. 2010;1:9. doi:10.3389/fphys.2010.00009
- Kitano H. Systems biology: A brief overview. Science. 2002;295(5560):1662–1664. doi:10.1126/science.1069492
- Yurkovich J, Palsson B. Quantitative-omic data empowers bottom-up systems biology. Curr Opin Biotechnol. 2018;51:130–136. doi:10.1016/j.copbio.2018.01.009
- Li M, Ding W, Sun T, et al. Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. FEBS J. 2018;285(2):220–232. doi:10.1111/febs.14191
- Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66(1):22–37.e9. doi:10.1016/j.molcel.2017.02.017
- Pamudurti N, Bartok O, Jens M, et al. Translation of circRNAs. Mol Cell. 2017;66(1):9–21.e7. doi:10.1016/j.molcel.2017.02.021
- Zhang H, Jiang L, Sun D, Hou J, Ji Z. CircRNA: A novel type of biomarker for cancer. Breast Cancer. 2018;25(1):1–7. doi:10.1007/s12282-017-0793-9