Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2019, vol. 28, nr 12, December, p. 1711–1715

doi: 10.17219/acem/104534

Publication type: review

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Glomerular podocytes in diabetic renal disease

Paweł Podgórski1,A,B,C,D,E, Andrzej Konieczny2,A,D,E,F, Łukasz Lis1,A,C,E, Wojciech Witkiewicz1,E,F, Zbigniew Hruby1,3,A,B,C,D,E,F

1 Voivodeship Specialty Hospital, Center for Research and Development, Wrocław, Poland

2 Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Poland

3 Faculty of Health Sciences, Wroclaw Medical University, Poland

Abstract

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD), both in the USA and in Europe; moreover, its incidence is rising worldwide. The main laboratory markers of DN progression are albuminuria and a reduction in glomerular filtration rates, although progression of the disease has been observed even in the absence of these biomarkers. Renal impairment, associated with diabetes, results from damage to the glomerular filtration barrier, at the level of highly differentiated glomerular epithelial cells: podocytes. These cells regulate glomerular filtration and many immunological processes occurring at this level. The earliest possible diagnosis of diabetic kidney disease (DKD) and implementation of intensive treatment offers the possibility of preventing or substantially delaying the onset of ESRD. In this article, we review various urinary biomarkers linked with glomerular podocyte cytophysiology as potentially sensitive diagnostic tools for the early detection of DKD. These biomarkers have predictive potential for assessing the progression toward end-stage nephropathy.

Key words

pathogenesis, diabetic kidney disease, podocytes

References (42)

  1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.
  2. Kramer A, Pippias M, Noordzij M, et al. The European Renal Association – European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report 2015: A summary. Clin Kidney J. 2018;11(1):108–122.
  3. Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2017 Annual Data Report: Epidemiology of kidney disease in the United States. Am J Kidney Dis. 2018;71(3 Suppl 1):A7.
  4. Kainz A, Hronsky M, Stel VS, et al. Prediction of prevalence of chronic kidney disease in diabetic patients in countries of the European Union up to 2025. Nephrol Dial Transplant. 2015;30(Suppl 4):iv113–118.
  5. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69–75.
  6. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Kro­lewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285–2293.
  7. Pugliese G. Updating the natural history of diabetic nephropathy. Acta Diabetol. 2014;51(6):905–915.
  8. Greka A, Mundel P. Cell biology and pathology of podocytes. Annu Rev Physiol. 2012;74:299–323.
  9. Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol. 2002;13(12):3005–3015.
  10. Mundel P, Kriz W. Structure and function of podocytes: An update. Anat Embryol (Berl). 1995;192(5):385–397.
  11. Hayden MR, Whaley-Connell A, Sowers JR. Renal redox stress and remodeling in metabolic syndrome, type 2 diabetes mellitus, and diabetic nephropathy: Paying homage to the podocyte. Am J Nephrol. 2005;25(6):553–569.
  12. Steffes MW, Schmidt D, McCrery R, Basgen JM; International Diabetic Nephropathy Study Group. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int. 2001;59(6):2104–2113.
  13. Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99(2):342–348.
  14. Kriz W. Podocyte is the major culprit accounting for the progression of chronic renal disease. Microsc Res Tech. 2002;57(4):189–195.
  15. Lemley KV. A basis for accelerated progression of diabetic nephropathy in Pima Indians. Kidney Int Suppl. 2003;83:S38–42.
  16. Dalla Vestra M, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes. 2003;52(4):1031–1035.
  17. Griffin SV, Petermann AT, Durvasula RV, Shankland SJ. Podocyte proliferation and differentiation in glomerular disease: Role of cell-cycle regulatory proteins. Nephrol Dial Transplant. 2003;18(Suppl 6):vi8–13.
  18. Wharram BL, Goyal M, Wiggins JE, et al. Podocyte depletion causes glomerulosclerosis: Diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol. 2005;16(10):2941–2952.
  19. Shankland SJ, Pippin JW, Duffield JS. Progenitor cells and podocyte regeneration. Semin Nephrol. 2014;34(4):418–428.
  20. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV. Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Renal Physiol. 2003;285(1):F40–48.
  21. Petermann AT, Krofft R, Blonski M, et al. Podocytes that detach in experimental membranous nephropathy are viable. Kidney Int. 2003;64(4):1222–1231.
  22. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55(1):225–233.
  23. Eremina V, Quaggin SE. The role of VEGF-A in glomerular development and function. Curr Opin Nephrol Hypertens. 2004;13(1):9–15.
  24. Fang L, Zhou Y, Cao H, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One. 2013;8(4):e60546.
  25. Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol. 2015;26(2):258–269.
  26. Landau D, Israel E, Rivkis I, et al. The effect of growth hormone on the development of diabetic kidney disease in rats. Nephrol Dial Transplant. 2003;18(4):694–702.
  27. Herbach N, Schairer I, Blutke A, et al. Diabetic kidney lesions of GIPRdn transgenic mice: Podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis. Am J Physiol Renal Physiol. 2009;296(4):F819–829.
  28. Reddy GR, Pushpanathan MJ, Ransom RF, et al. Identification of the glomerular podocyte as a target for growth hormone action. Endocrinology. 2007;148(5):2045–2055.
  29. Chitra PS, Swathi T, Sahay R, Reddy GB, Menon RK, Kumar PA. Growth hormone induces transforming growth factor-beta-induced protein in podocytes: Implications for podocyte depletion and proteinuria. J Cell Biochem. 2015;116(9):1947–1956.
  30. Loeffler I, Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy: Fact or fiction? Cells. 2015;4(4):631–652.
  31. Dai HY, Zheng M, Tang RN, et al. Effects of angiotensin receptor blocker on phenotypic alterations of podocytes in early diabetic nephropathy. Am J Med Sci. 2011;341(3):207–214.
  32. Yamaguchi Y, Iwano M, Suzuki D, et al. Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis. 2009;54(4):653–664.
  33. Merscher S, Fornoni A. Podocyte pathology and nephropathy: Sphingo­lipids in glomerular diseases. Front Endocrinol (Lausanne). 2014;5:127.
  34. Ishizawa S, Takahashi-Fujigasaki J, Kanazawa Y, et al. Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. Clin Exp Nephrol. 2014;18(6):844–852.
  35. Czyżewska-Buczyńska A, Konieczny A, Ryba M, et al. Zastosowanie nowych markerów wydalanych z moczem w diagnostyce wczes­nego uszkodzenia nerek. Diagn Lab. 2013;49:239–245.
  36. Yu D, Petermann A, Kunter U, Rong S, Shankland SJ, Floege J. Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J Am Soc Nephrol. 2005;16(6):1733–1741.
  37. Konieczny A, Czyzewska-Buczynska A, Ryba M, et al. Expression of cell membrane antigens in cells excreted in the urinary sediment predicts progression of renal disease in patients with focal segmental glomerulosclerosis. Am J Nephrol. 2015;42(1):35–41.
  38. Hara M, Yamagata K, Tomino Y, et al. Urinary podocalyxin is an early marker for podocyte injury in patients with diabetes: Establishment of a highly sensitive ELISA to detect urinary podocalyxin. Diabetologia. 2012;55(11):2913–2919.
  39. Wang G, Lai FM, Lai KB, et al. Intra-renal and urinary mRNA expression of podocyte-associated molecules for the estimation of glomerular podocyte loss. Ren Fail. 2010;32(3):372–379.
  40. Wang G, Lai FM, Lai KB, Chow KM, Li KT, Szeto CC. Messenger RNA expression of podocyte-associated molecules in the urinary sediment of patients with diabetic nephropathy. Nephron Clin Pract. 2007;106(4):c169–179.
  41. Rossing K, Mischak H, Dakna M, et al. Urinary proteomics in diabetes and CKD. J Am Soc Nephrol. 2008;19(7):1283–1290.
  42. Zurbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61(12):3304–3313.