Advances in Clinical and Experimental Medicine
2019, vol. 28, nr 12, December, p. 1675–1682
doi: 10.17219/acem/110312
Publication type: original article
Language: English
Download citation:
Evaluation of liver-type fatty acid binding protein (L-FABP) and interleukin 6 in children with renal cysts
1 Cardiological Outpatient Center “Medicor”, Myszków, Poland
2 Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
3 Chair and Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
4 Pediatric Nephrology Ward, Public Clinical Hospital No. 1 in Zabrze, Poland
5 Department of Children’s Developmental Defects Surgery and Traumatology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Poland
Abstract
Background. Renal cysts, according to their etiology, can be divided into genetic and acquired cysts. This is of great importance in patients with cystic kidney disease with a possible poor prognosis to identify markers of early kidney damage.
Objectives. The objective of this study was to evaluate the concentration of serum and urine liver-type fatty acid binding protein (L-FABP) and interleukin 6 (IL-6) in children with kidney cysts.
Material and Methods. The study was conducted on a group of 39 children with kidney cysts including 20 subjects with autosomal dominant polycystic kidney disease (ADPKD).
Results. Serum and urine L-FABP concentration in children with renal cysts was significantly higher compared to the controls, regardless of the underlying type of cystic degeneration, number of cysts and gender. Also, serum and urinary IL-6 concentration was significantly higher than in the control group. There was a significant negative correlation between serum L-FABP concentration and standard deviation score (SDS) for diastolic blood pressure (DBP). A significant negative correlation was found between serum IL-6 concentration and systolic blood pressure (SBP), DBP and mean arterial pressure (MAP) values as well as SDS for SBP and DBP. In addition, a significant positive correlation was found between urinary IL-6 concentration and estimated glomerular filtration rate (eGFR).
Conclusion. Higher concentration of L-FABP in serum and urine in children with kidney cysts indicates the early damage to the renal parenchyma, detectable before the onset of hypertension and other organ damage. Significantly higher serum and urinary IL-6 levels in children with cystic kidney disease compared to healthy children may suggest the role of this cytokine in chronic kidney disease development.
Key words
children, interleukin 6, autosomal dominant polycystic kidney disease, liver-type fatty acid binding protein, kidney cysts
References (41)
- Osathanondh V, Potter EL. Pathogenesis of polycystic kidneys: Survey of results of microdissection. Arch Pathol. 1964;77:510–512.
- Kim B, King BF, Vrtiska TJ, Irazabal MV, Torres VE, Harris PC. Inherited renal cystic diseases. Abdom Radiol (NY). 2016;41(6):1035–1051.
- Audrezet MP, Corbiere C, Lebbah S, et al. Comprehensive PKD1 and PKD2 mutation analysis in prenatal autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27(3):722–729.
- Norman J. Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta. 2011;1812(10):1327–1336.
- Nowak KL, Chonchol M, You Z, Gupta M, Gitomer B. Affected parent sex and severity of autosomal dominant polycystic kidney disease: A retrospective cohort study. Clin Nephrol. 2018;89(3):196–204.
- Ravine D, Gibson RN, Donlan J, Sheffield LJ. An ultrasound renal cyst prevalence survey: Specificity data for inherited renal cystic diseases. Am J Kidney Dis. 1993;22(6):803–807.
- Turco D, Severi S, Mignani R, Aiello V, Magistroni R, Corsi C. Reliability of total renal volume computation in polycystic kidney disease from magnetic resonance imaging. Acad Radiol. 2015;22(11):1376–1384.
- Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM. Evaluation of ultrasonographic diagnostics criteria for autosomal dominant polycystic kidney disease 1. Lancet. 1994;343(8903):824–827.
- Müller RU, Benzing T. Cystic kidney diseases from the adult nephrologist’s point of view. Front Pediatr. 2018;6:1–8.
- Simms RJ. Autosomal dominant polycystic kidney disease. BMJ. 2016;352:1–10.
- Pinto CS, Raman A, Reif GA, et al. Phosphodiesterase isoform regulation of cell proliferation and fluid secretion in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27(4):1124–1134.
- Niemczyk M, Pilecki T, Gradzik M, Bujko M, Niemczyk S, Pączek L. Blood pressure and intracranial aneurysms in autosomal dominant polycystic kidney disease. Kidney Blood Press Res. 2014;39(6):630–635.
- Dembowska M, Nieszporek T, Więcek A. Zwyrodnienie wielotorbielowate nerek jako przyczyna nadciśnienia tętniczego. Terapia. 2011;19(7–8):14–18.
- Schwartz GJ, Munoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–637.
- Cornec-Le Gall E, Audrezet MP, Rousseau A, et al. The PROPKD Score: A new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27(3):942–951.
- Marlais M, Cuthell O, Langan D, Dudley J, Sinha MD, Winyard PJ. Hypertension in autosomal dominant polycystic kidney disease: A meta-analysis. Arch Dis Child. 2016;101(12):1142–1147.
- Hogan MC, Abebe K, Torres VE, et al. Liver involvement in early autosomal-dominant polycystic kidney disease. Clin Gastroenterol Hepatol. 2015;13(1):155–164.
- Glatz JF, Van der Vusse GJ. Cellular fatty acid-binding proteins: Their function and physiological significance. Prog Lipid Res. 1996;35(3):243–282.
- Xu Y, Xie Y, Shao X, Ni Z, Mou S. L-FABP: A novel biomarker of kidney disease. Clin Chim Acta. 2015;445:85–90.
- Smathers RL, Petersen DR. The human fatty acid-binding protein family: Divergences and functions. Hum Genom. 2011;5(3):170–191.
- Małyszko J, Bachorzewska-Gajewska H, Dobrzycki S. Biomarkers of contrast-induced nephropathy: Which ones and what is their clinical relevance? Interv Cardiol Clin. 2014;3(3):379–391.
- McMahon GM, Waikar SS. Biomarkers in nephrology: Core Curriculum 2013. Am J Kidney Dis. 2013;62(1):165–178.
- Susantitaphong P, Siribamrungwong M, Doi K, Noiri E, Terrin N, Jaber BL. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: A meta-analysis. Am J Kidney Dis. 2013;61(3):430–439.
- Schaper F, Rose-John S. Interleukin 6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015;26(5):475–487.
- Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: A highly regulated and dynamic system. Cytokine. 2014;70(1):11–20.
- Tanaka T, Kishimoto T. The biology and medical implications of interleukin 6. Cancer Immunol Res. 2014;2(4):288–294.
- Chiesa C, Pacifico L, Natale F, Hofer N, Osborn JF, Resch B. Fetal and early neonatal interleukin 6 response. Cytokine. 2015;76(1):1–12.
- Ma H, Sun G, Wang W, et al. Association between interleukin-6 -572 C> G and -174- G> C polymorphisms and hypertension: A meta-analysis of case-control studies. Medicine. 2016;95(2):e2416. doi: 10.1097/MD.0000000000002416
- Litwin M. Nadciśnienie tętnicze pierwotne u dzieci i młodzieży – patofizjologia. [In:]. Litwin M, Januszewicz A, Prejbisz A. ed. Nadciśnienie tętnicze u młodzieży i młodych dorosłych. Zapobieganie, diagnostyka i leczenie. Kraków, Poland: Medycyna Praktyczna; 2011:289–315.
- Kułaga Z, Litwin M, Grajda A, Gurzkowska B, Napieralska E, Kułaga K. Rozkłady wartości ciśnienia krwi w populacji referencyjnej dzieci i młodzieży w wieku szkolnym. Standardy medyczne. Pediatria. 2010;7:100–111.
- Kułaga Z, Rożdżyńska A, Palczewska I, Grajda A, Gurzkowska B, Napieralska E. Siatki centylowe wysokości, masy ciała i wskaźnika masy ciała dzieci i młodzieży w Polsce – wyniki badania OLAF. Standardy medyczne. Pediatria. 2010;7:690–700.
- Sato R, Suzuki Y, Takahashi G, Kojika M, Inoue Y, Endo S. A newly developed kit for the measurement of urinary liver-type fatty acid-binding protein as a biomarker for acute kidney injury in patients with critical care. J Infect Chemother. 2015;21(3):165–169.
- Khatir DS, Bendtsen MD, Birn H, et al. Urine liver fatty acid binding protein and chronic kidney disease progression. Scand J Clin Lab Invest. 2017;77(7):549–554.
- Matsui K, Kamijo-Ikemori A, Imai N, et al. Clinical significance of urinary liver-type fatty acid-binding protein as a predictor of ESRD and CVD in patients with CKD. Clin Exp Nephrol. 2016;20(2):195–203.
- Ichikawa D, Kamijo-Ikemori A, Sugaya T, et al. Renoprotective effect of renal liver-type fatty acid binding protein and angiotensin II type 1a receptor loss in renal injury caused by RAS activation. Am J Physiol Renal Physiol. 2014;306(6):F655–F663.
- Plesiński K, Adamczyk P, Świętochowska E, et al. Angiotensinogen and interleukin 18 in serum and urine of children with kidney cysts. J Renin Angiotensin Aldosterone Syst. 2019;20(3):1470320319862662. doi:10.1177/1470320319862662
- Ichikawa D, Kamijo-Ikemori A, Sugaya T, et al. Renal liver-type fatty acid binding protein attenuates angiotensin II-induced renal injury. Hypertension. 2012;60(4):973–980.
- Jones SA, Fraser DJ, Fielding CA, Jones GW. Interleukin 6 in renal disease and therapy. Nephrol Dial Transplant. 2015;30(4):564–574.
- Nakamura T, Sato E, Fujiwara N, et al. Changes in urinary albumin excretion, inflammatory and oxidative stress markers in ADPKD patients with hypertension. Am J Med Sci. 2012;343(1):46–51.
- Menon V, Rudym D, Chandra P, Miskulin D, Perrone R, Sarnak M. Inflammation, oxidative stress, and insulin resistance in polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6(1):7–13.
- Soleimani A, Adabavazeh R, Nikoueinejad H, Sharif MR, Faraji S, Shahreza BO. T helper 17 lymphocyte pathway in the diagnosis of autosomal dominant polycystic kidney disease. Iran J Kidney Dis. 2015;9(2):105–112.