Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2019, vol. 28, nr 10, October, p. 1429–1436

doi: 10.17219/acem/109342

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Is intestinal stasis sufficient by itself in promoting enterocolitis in a non-genetic rat model of Hirschsprung’s disease?

Magdalini Mitroudi1,A,B,C,D,E,F, Dimitra Psalla2,A,B,E, Konstantina Kontopoulou3,B,E,F, Konstantinos Theocharidis4,B,F, Dimitrios Sfoungaris1,A,C,D,E,F

1 1st Department of Pediatric Surgery, Aristotelion University of Thessaloniki, General Hospital G. Gennimatas, Greece

2 Laboratory of Pathology, School of Health Sciences, Faculty of Veterinary Medicine, Aristotelion University of Thessaloniki, Greece

3 Laboratory of Microbiology. G. Gennimatas General Hospital, Thessaloniki, Greece

4 Department of Pathology, G. Gennimatas General Hospital, Thessaloniki, Greece

Abstract

Background. Hirschsprung’s disease-associated enterocolitis (HE) is a life-threatening septic complication of Hirschsprung’s disease (HD), leading to bacterial translocation (BT) and sepsis. Many factors, such as intestinal stasis, HD-related inherited immune disorders and abnormal mucosal secretion have been implicated in its pathogenesis.
Objectives. To investigate the effect of intestinal stasis as an independent factor in the pathogenesis of HE intestinal lesions and its systematic effects.
Material and Methods. The rectal ganglion cells of 46 Wistar rats were chemically ablated through local benzalkonium chloride (BAC) injection, in order to create a HD model (megacolon rats) that does not carry the possible genetic burden of HD. The animals were sacrificed either on the 20th or 25th day after ablation and were examined for histopathological changes on the wall of the small intestine, presence of bacterial translocation in body organs, body biometrics, and white blood cell count (WBC) and hemoglobin concentration. The results were compared to control animals.
Results. In the megacolon rats, severe damage on the small intestine as well as BT proportional to the extent of the intestinal damage and to the time elapsed after ablation was observed. Significant effects on the WBCs, hemoglobin concentration and biometric parameters were also observed.
Conclusion. In megacolon rats, intestinal stasis can lead by itself to a full-blown HE. The HE lesions that promote BT are present even in regions distant from the aganglionic bowel and are proportional to the time elapsed under the influence of intestinal stasis. Systematic effects such as growth retardation are also produced.

Key words

sepsis, bacterial translocation, intestinal obstruction, megacolon, ganglion cell ablation

References (39)

  1. Hirschsprung H. Stuhtragheit Neugeborener infolge Dilatationen und Hypertrophie des Colons. Jahrbuch Kinderheikunde. 1887;27:1.
  2. Pastor AC, Osman F, Teitelbaum DH, Caty MG, Langer JC. Development of a standardized definition for Hirschsprung’s-associated enterocolitis: A Delphi analysis. J Pediatr Surg. 2009;44(1):251–256.
  3. Elhalaby EA, Coran AG, Blane CE, Hirschl RB, Teitelbaum DH. Enterocolitis associated with Hirschsprung’s disease: A clinical-radiological characteriza-tion based on 168 patients. J Pediatr Surg. 1995;30(1):76–83.
  4. Pini Prato A, Rossi V, Avanzini S, Mattioli G, Disma N, Jasonni V. Hirsch­sprung’s disease: What about mortality? Pediatr Surg Int. 2011;27(5):473–478.
  5. Carneiro PMR, Brereton RJ, Drake DP, Kiely EM, Spitz L, Turnock R. Enterocolitis in Hirschsprung’s disease. Pediatr Surg Int. 1992;7(5):356–360.
  6. Ouladsaiad M. How to manage a late diagnosed Hirschsprung’s disease. Afr J Paediatr Surg. 2016;13(2):82–87.
  7. Langer JC. Hirschsprung disease. Curr Opin Pediatr. 2013;25(3):368–374.
  8. Coran AG, Teitelbaum DH. Recent advances in the management of Hirschsprung’s disease. Am J Surg. 2000;180(5):382–387.
  9. Hackam DJ, Filler RM, Pearl RH. Enterocolitis after the surgical treatment of Hirschsprung’s disease: Risk factors and financial impact. J Pediatr Surg. 1998;33(6):830–833.
  10. Caniano DA, Teitelbaum DH, Qualman SJ, Shannon BT. The piebald lethal murine strain: Investigation of the cause of early death. J Pediatr Surg. 1989;24(9):906–910.
  11. Jiao CL, Chen XY, Feng JX. Novel insights into the pathogenesis of Hirschsprung’s-associated enterocolitis. Chin Med J (Engl). 2016;129(12):1491.
  12. Murphy F, Prem P. New insights into the pathogenesis of Hirsch­sprung’s associated enterocolitis. Pediatr Surg Int. 2005;21(10):773–779.
  13. Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101(4):478–483.
  14. Cheng Z, Dhall D, Zhao L, et al. Murine model of Hirschsprung-associated enterocolitis. I. Phenotypic characterization with development of a histopathologic grading system. J Pediatr Surg. 2010;45(3):475–482.
  15. Rossi V, Avanzini S, Mosconi M, et al. Hirschsprung-associated enterocolitis. J Gastroint Dig Syst. 2014;4:170.
  16. Gosain A, Brinkman AS. Hirschsprung’s-associated enterocolitis. Curr Opin Pediatr. 2015;27(3):364–369.
  17. Wilson-Storey D, Scobie WG. Impaired gastrointestinal mucosal defense in Hirschsprung’s disease: A clue to the pathogenesis of enterocolitis? J Pediatr Surg. 1989;24(5):462–464.
  18. Fujimoto T, Miyano T. Abnormal expression of the blood group antigen (BGA) in colon of Hirschsprung’s disease. Pediatr Surg Int. 1994;9(4):242–247.
  19. Wilson-Storey D, Scobie WG, Raeburn JA. Defective white blood cell function in Hirschsprung’s disease: A possible predisposing factor to enterocolitis. J R Coll Surg Edinb. 1988;33(4):185–188.
  20. Teitelbaum DH, Qualman SJ, Caniano DA. Hirschsprung’s disease: Identification of risk factors for enterocolitis. Ann Surg. 1988;207(3):240–244.
  21. Puri P, Shinkai T. Pathogenesis of Hirschsprung’s disease and its variants: Recent progress. Semin Pediatr Surg. 2004;13(1):18–24.
  22. Menezes M, Puri P. Long-term clinical outcome in patients with Hirsch­sprung’s disease and associated Down’s syndrome. J Pediatr Surg. 2005;40(5):810–812.
  23. Morabito A, Lall A, Gull S, Mohee A, Bianchi A. The impact of Down’s syndrome on the immediate and long-term outcomes of children with Hirschsprung’s disease. Pediatr Surg Int. 2006;22(2):179–181.
  24. Mäkitie O, Heikkinen M, Kaitila I, Rintala R. Hirschsprung’s disease in cartilage-hair hypoplasia has poor prognosis. J Pediatr Surg. 2002;37(11):1585–1588.
  25. Passarge E. The genetics of Hirschsprung’s disease: Evidence for heterogeneous etiology and a study of sixty-three families. N Engl J Med. 1967;276(3):138–143.
  26. Bolk S, Pelet A, Hofstra RMW, et al. A human model for multigenic inheritance: Phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc Natl Acad Sci U S A. 2000;97(1):268–273.
  27. Parisi MA, Kapur RP. Genetics of Hirschsprung disease. Curr Opin Pediatr. 2000;12(6):610–617.
  28. Surana R, Quinn FM, Puri P. Evaluation of risk factors in the development of enterocolitis complicating Hirschsprung’s disease. Pediatr Surg Int. 1994;9(4):234–236.
  29. Lee CC, Lien R, Chian MC, et al. Clinical impacts of delayed diagnosis of Hirschsprung’s disease in newborn infants. Pediatr Neonatol. 2012;53(2):133–137.
  30. Sato A, Yamamoto M, Imamura K, Kashiki Y, Kunieda T, Sakata K. Pathophysiology of aganglionic colon and anorectum: An experimental study on aganglionosis produced by a new method in the rat. J Pediatr Surg. 1978;13(4):399–435.
  31. Yoneda A, Shima H, Nemeth L, Oue T, Puri P. Selective chemical ablation of the enteric plexus in mice. Pediatr Surg Int. 2002;18(4):234–237.
  32. Qin HH, Lei N, Mendoza J, Dunn JC. Benzalkonium chloride-treated anorectums mimicked endothelin-3-deficient aganglionic anorectums on manometry. J Pediatr Surg. 2010;45(12):2408–2411.
  33. Webster W. Aganglionic megacolon in piebald-lethal mice. Arch Pathol. 1974;97(2):111–117.
  34. Fujimoto T. Natural history and pathophysiology of enterocolitis in the piebald lethal mouse model of Hirschsprung’s disease. J ­Pediatr Surg. 1988;23(3):237–242.
  35. Fujimoto T, Reen DJ, Puri P. Inflammatory response in enterocolitis in the piebald lethal mouse model of Hirschsprung’s disease. ­Pediatr Res. 1988;24(2):152–155.
  36. Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun. 1979;23(2):403–411.
  37. Awonuga AO, Belotte J, Abuanzeh S, Fletcher NM, Diamond MP, Saed GM. Advances in the pathogenesis of adhesion development: The role of oxidative stress. Reprod Sci. 2014;21(7):823–836.
  38. Loftus TJ, Mohr AM, Moldawer LL. Dysregulated myelopoiesis and hematopoietic function following acute physiologic insult. Curr Opin Hematol. 2018;25(1):37–43.
  39. Peters T, Peters JC. The biosynthesis of rat serum albumin. VI. Intracellular transport of albumin and rates of albumin and liver protein synthesis in vivo under various physiological conditions. J Biol Chem. 1972;247(12):3858–3863.