Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 166.39
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2018, vol. 27, nr 8, August, p. 1131–1139

doi: 10.17219/acem/74375

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Quantitative anatomy of the liver visceral surface in the human fetus

Monika Paruszewska-Achtel1,A,B,C,D, Małgorzata Dombek1,A,B,C, Mateusz Badura1,B,C, Gabriela M. Elminowska-Wenda1,B,C, Marcin Wiśniewski1,B, Michał Szpinda1,A,D,E,F

1 Department of Normal Anatomy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland

Abstract

Background. Understanding liver growth is relevant in both determining the status of normative fetal development and prenatal detection of its disorders.
Objectives. This study attempted to examine age-specific reference intervals and the best-fit growth dynamics of the liver visceral surface for hepatic height, length, isthmic diameter, oblique diameters, circumferences of individual lobes, and total liver circumference.
Material and Methods. Using anatomical, digital and statistical methods, the liver visceral surface was measured in 69 human fetuses of both sexes (32 males and 37 females) aged 18–30 weeks, derived from spontaneous abortions and stillbirths.
Results. The statistical analysis showed no sex differences. The best growth models mostly followed natural logarithmic functions, except for the length of the fissure for ligamentum teres hepatis and the length of fossa for gallbladder, which increased commensurately. Neither the length of fissure for ductus venosus nor the length of sulcus for inferior vena cava modeled the best-fit curves. The vertical-to-transverse diameter ratio of the liver was constant and averaged 0.75 ±0.12, while the isthmus ratio significantly altered from 0.78 ±0.07 at 18–19 weeks through 0.68 ±0.05 at 26–27 weeks to 0.72 ±0.07 at 28–30 weeks of gestation.
Conclusion. With no sexual differences, the liver morphometric parameters increased either logarithmically (lengths of: transverse diameter, vertical diameter, right oblique diameter, left oblique diameter, isthmic diameter and porta hepatis, circumferences of: right lobe, left lobe, quadrate lobe, caudate lobe, and total liver circumference) or proportionately (length of fissure for ligamentum teres hepatis, length of fossa for gallbladder). The quantitative data of the growing liver may be relevant in both the ultrasound monitoring of fetuses and early detection of congenital liver anomalies.

Key words

liver, human fetus, size, visceral surface, growth dynamics

References (29)

  1. Murao F, Senoh D, Takamiya O, Yamamoto K, Hasegawa K, Kitao M. Ultrasonic evaluation of liver development in the fetus in utero. Gynecol Obstet Invest. 1989;28(4):198–201.
  2. Murao F, Takamiya O, Yamamoto K, Iwanari O. Detection of intrauterine growth retardation based on measurement of size of the liver. Gynecol Obstet Invest. 1990;29(1):26–31.
  3. Chang CH, Yu CH, Chang FM, Ko HC, Chen HY. The assessment of normal fetal liver volume by three-dimensional ultrasound. Ultrasound Med Biol. 2003;26(6):1123–1129.
  4. Pardi G, Cetin I. Human fetal growth and organ development: 50 years of discoveries. Am J Obstet Gynecol. 2006;194(4):1088–1099.
  5. Fleischer AC, Manning FA, Jeanty P, Romero R. Sonography in Obstetrics and Gynecology. Principles and Practice. 6th ed. New York, NY: McGraw-Hill Professional; 2001:109–130,411–432.
  6. Ghidini A, Sirtori M, Romero R, Yarkoni S, Solomon L, Hobbins JC. Hepatosplenomegaly as the only prenatal finding in fetus with pyruvate kinase deficiency anemia. Am J Perinatol. 1991;8(1):44–46.
  7. Murao E, Takamori H, Hata K, Hata T, Kitao M. Fetal liver measurement by ultrasonography. Int J Gynecol Obstet. 1987;25(5):381–385.
  8. Murao F, Takamori H, Aoki S, Hata K, Hata T, Yamamoto K. Ultrasonographic measurement of the human fetal liver in utero. Gynecol Obstet Invest. 1987;24(3):145–150.
  9. Naeye RL. Infants of diabetic mothers: A quantitative, morphologic study. Pediatrics. 1965;35:980–988.
  10. Vintzileos AM, Campbell WA, Storlazzi E, Mirochnick MH, Escoto DT, Nochimson DJ. Fetal liver ultrasound measurement in isoimmunized pregnancies. Obstet Gynecol. 1986;68(2):162–167.
  11. Weiner S. The Isoimmunized Pregnancy. Perinatal Medicine Management of the High Risk Fetus and Neonate. 2nd ed. Baltimore, MD: Williams and Wilkins; 1978:267–289.
  12. Albay S, Mehmet A, Malas MA, Cetin E, Cankara N, Karahan N. Development of the liver during the fetal period. Saudi Med J. 2005;26(11):1710–1715.
  13. Hedrick HL, Danzer E, Merchant A, et al. Liver position and lung-to-head ratio for prediction of extracorporeal membrane oxygenation and survival in isolated left congenital diaphragmatic hernia. Am J Obstet Gynecol. 2007;197(4):422.e1–4.
  14. Silver RM. Fetal death. Obstet Gynecol. 2007;109(1):153–167.
  15. Aviram R, Shpan DK, Markovitch O, Fishman A, Tepper R. Three-dimensional first trimester fetal volumetry comparison with crown rump length. Early Hum Dev. 2004;80(1):1–5.
  16. Breeze ACG, Gallagher FA, Lomas DJ, Smith GCS, Lees CC. Postmortem fetal organ volumetry using magnetic resonance imaging and comparison to organ weights at conventional autopsy. Ultrasound Obstet Gynecol. 2008;31(2):187–193.
  17. Paruszewska-Achtel M. Morphometric study of the liver in human fetuses [doctoral thesis, in Polish]. Bydgoszcz, Poland: Nicolaus Copernicus University; 2014.
  18. Szpinda M, Baumgart M, Szpinda A, et al. Cross-sectional study of the ossification center of the C1–S5 vertebral bodies. Surg Radiol Anat. 2013;35(5):395–402.
  19. Szpinda M, Baumgart M, Szpinda A, Woźniak A, Mila-Kierzenkowska C. Cross-sectional study of the neural ossification centers of vertebrae C1–S5 in the human fetus. Surg Radiol Anat. 2013;35(8):701–711.
  20. Szpinda M, Baumgart M, Szpinda A, et al. Morphometric study of the T6 vertebra and its three ossification centers in the human fetus. Surg Radiol Anat. 2013;35(10):901–916.
  21. Szpinda M, Daroszewski M, Woźniak A, et al. Novel patterns for the growing main bronchi in the human fetus: An anatomical, digital and statistical study. Surg Radiol Anat. 2013;36(1):55–65.
  22. Szpinda M, Daroszewski M, Woźniak A, Szpinda A, Mila-Kierzenkowska C. Tracheal dimensions in human fetuses: An anatomical, digital and statistical study. Surg Radiol Anat. 2012;34:317–323.
  23. Szpinda M, Paruszewska-Achtel M, Woźniak A, Badura M, Mila-Kierzenkowska C, Wiśniewski M. Three-dimensional growth dynamics of the liver in the human fetus. Surg Radiol Anat. 2015;37:439–448.
  24. Szpinda M, Paruszewska-Achtel M, Woźniak A, et al. Volumetric growth of the liver in the human fetus: An anatomical, hydrostatic, and statistical study. Biomed Res Int. 2015;2015:858162. doi: 10.1155/2015/858162
  25. Szpinda M, Siedlaczek W, Szpinda A, Woźniak A, Mila-Kierzenkowska C, Wiśniewski M. Volumetric growth of the lungs in human fetuses: An anatomical, hydrostatic and statistical study. Surg Radiol Anat. 2014;36(8):813–820.
  26. Bożiłow W, Sawicki K. Metody badań zmienności cech anatomicznych człowieka podczas rozwoju prenatalnego i okołoporodowego. Wrocław, Poland: Akademia Medyczna; 1980.
  27. Gworys B. Problem oceny wieku u płodów i noworodków ludzkich [rozprawa habilitacyjna]. Wrocław, Poland: Akademia Medyczna; 1999.
  28. Haffajee MR. The fetal gallbladder: Morphology and morphometry by microdissection. Surg Radiol Anat. 2000;22(5–6):261–270.
  29. Wang BJ, Kim JH, Yu HC, Rodriguez-Vazquez JF, Murakami G, Cho BH. Fetal intrahepatic gallbladder and topographical anatomy of the liver hilar region and hepatocystic triangle. Clin Anat. 2012;25(5):619–627.