Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2018, vol. 27, nr 7, July, p. 1017–1020

doi: 10.17219/acem/73999

Publication type: review

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Ovarian cancer stem cells: A target for oncological therapy

Anna Markowska1,A,D, Stefan Sajdak2,E, Adam Huczyński3,D,E, Sandra Rehlis4,B, Janina Markowska5,D,E,F

1 Department of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Poland

2 Department of Gynecological Surgery, Poznan University of Medical Sciences, Poland

3 Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poland

4 Klinikum Fulda, Universitätsmedizin, Marburg, Germany

5 Department of Oncology, Poznan University of Medical Sciences, Poland

Abstract

According to numerous studies, failures in treatment of ovarian cancer, i.e., a relapse and metastases, result from a small population of cancer stem cells (CSCs). They may also be responsible for tumor initiation. Cancer stem cells are resistant to chemoand radiotherapy. Eradication of CSCs may involve the application of salinomycin, metformin and Clostridium perfringens; the effect of anti-angiogenic factors remains controversial. Salinomycin is an antibiotic isolated from Streptomyces albus bacteria. Its CSC-eradicating effect has been demonstrated both in ovarian cancer cell lines and in women with breast cancer. Clostridium perfringens enterotoxin (CPE) has been demonstrated to destroy CSCs in ovarian cancer both in vivo and in vitro. Metformin, apart from its hypoglycemic effect, reduces the CSC population and inhibits the proliferation of neoplastic cells and angiogenesis. Cancer stem cells with expression of VEGFR1+ have been described as affecting circulating cancer cells and influencing the formation of metastases. Both positive and negative effects of anti-angiogenic therapy on the CSC population have been documented.

Key words

angiogenesis, metformin, salinomycin, ovarian cancer stem cells, Clostridium perfringens enterotoxin

References (40)

  1. Chen J, Wang J, Zhang Y, et al. Observation of ovarian cancer stem cell behavior and investigation of potential mechanisms of drug resistance in three-dimensional cell culture. J Biosci Bioeng. 2014; 118(2):214–222.
  2. Shah MM, Landen CHN. Ovarian cancer stem cells: Are they real and why are they important? Review. Gynecol Oncol. 2014;132(2):483–489.
  3. Massard C, Deutsch E, Soria JC. Tumor stem cell-targeted treatment: Elimination or differentiation. Ann Oncol. 2006;17(11):1620–1624.
  4. Rich JN. Cancer stem cells in radiation resistance. Cancer Res. 2007; 67(19):8980–8984.
  5. Shukla G, Srivastava AK, Patidar R, Khara P, Saxen R. Therapeutic potential, challenges and future perspective of cancer stem cells in translational oncology: A critical review. Curr Stem Cell Res Ther. 2017;12(3):207-224.
  6. Garcia-Rubino ME, Lozano-Lopez C, Campos JM. Inhibitors of cancer stem cells. Anticancer Agents Med Chem. 2016;16(10):1230–1239.
  7. Tomao F, Papa A, Rossi L, et al. Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: Basic knowledge and therapeutic possibilities for an innovative approach. J Exp Clin Cancer Res. 2013;32:48.
  8. Eyler CE, Rich JN. Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–2845.
  9. Zeng J, Ruan J, Luo L, et al. Molecular portraits of heterogeneity related to cancer stem cells in human ovarian cancer. Int J Gynecol Cancer. 2014;24(1):29–35.
  10. Bapat SA. Human ovarian cancer stem cells. Reproduction. 2010;140(1): 33–41.
  11. Shi YY, Jiang H. Prognostic role of the cancer stem cell marker CD44 in ovarian cancer: A meta-analysis. Genet Mol Res. 2016;15(3). doi: 10.4238/gmr.15038325
  12. Yu Z, Liu T, Zhao Y, et al. Cisplatin targets the stromal cell-derived factor-1-CXC chemokine receptor type 4 axis to suppress metastasis and invasion of ovarian cancer-initiating cells. Tumor Biol. 2014; 35:4637–4644.
  13. Abubaker K, Latifi A, Luwor R, et al. Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Mol Cancer. 2013;12:24. doi:10.1186/1476-4598-12-24
  14. Zhou N, Wu X, Yang B, Zhang D, Qing G. Stem cell characteristics of dormant cells and cisplatininduced effects on the stemness of epithelial ovarian cancer cells. Mol Med Rep. 2014;10(5):2495–2504.
  15. Miyazaki Y, Shibuya M, Sugawara H, Kawaquchi O, Hirsoe C. Salinomycin, a new polyether antibiotic. J Antibiot (Tokyo). 1974;27(11):814–821.
  16. Antoszczak M, Huczyński A. Anticancer activity of polyether ionophore-salinomycin. Anticancer Agents Med Chem. 2015;15(5):575–591.
  17. Naujokat C, Steinhart R. Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol. 2012;950658. doi:10.1155/2012/ 950658
  18. Fuchs D, Heinold A, Opelz G, Daniel V, Naujokot C. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun. 2009;390(3):743–749.
  19. Kim JH, Yoo HI, Kang HS, Ro J, Yoon S. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest. Biochem Biophys Res Commun. 2012;418(1):98–103.
  20. Zhang B, Wang X, Cai F, Chen W, Loesch U, Zhong XY. Antitumor properties of salinomycin on cisplatin-resistant human ovarian cancer cells in vitro and in vivo: Involvement of p38 MAPK activation. Oncol Rep. 2013;29(4):1371–1378.
  21. Kaplan F, Teksen F. Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCAR-3). Tumour Biol. 2016;37(3):3897–3903.
  22. Chung H, Kim YH, Kwon M, et al. The effect of salinomycin on ovarian cancer stem-like cells. Obstet Gynecol Sci. 2016;59(4):261–268.
  23. Parajuli B, Shin SJ, Kwon SH, et al. Salinomycin induces apoptosis via death receptor-5 up-regulation in cisplatin-resistant ovarian cancer cells. Anticancer Res. 2013;33(4):1457–1462.
  24. Parajuli B, Lee HG, Kwon SH, et al. Salinomycin inhibits Akt/NF-κB and induces apoptosis in cisplatin resistant ovarian cancer cells. Cancer Epidemiol. 2013;37(4):512–517.
  25. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: A cohort study among people with type 2 diabetes. Diabetes Care. 2009;32(9): 1620–1625.
  26. Dilokthornsakul P, Chaiyakunapruk N, Termrungruanglert W, Pratoomsoot C, Saokaew S, Sruamsiri R. The effects of metformin on ovarian cancer: A systematic review. Int J Gynecol Cancer. 2013;23(9): 1544–1551.
  27. Kumar S, Meuter A, Thapa P, et al. Metformin intake is associated with better survival in ovarian cancer: A case-control study. Cancer. 2013;119(3):555–562.
  28. Romero IL, McCormick A, McEwen KA, et al. Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity. Obstet Gynecol. 2012;119(1):61–67.
  29. Shank JJ, Yang K, Ghannam J, et al. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol Oncol. 2012;127(2):390–397.
  30. Del Barco S, Vazquez-Martin A, Cufí S, et al. Metformin: Multi-faceted protection against cancer. Oncotarget. 2011;2(12):896–917.
  31. Charafe-Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS. Cancer stem cells in breast: Current opinion and future challenges. Pathobiology. 2008;75(2):75–84.
  32. Zhang R, Zhang P, Wang H, et al. Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44(+)CD117(+) ovarian cancer stem cells. Stem Cell Res Ther. 2015;6:262.
  33. English DP, Santin AD. Claudins overexpression in ovarian cancer: Potential targets for Clostridium perfringens enterotoxin (CPE) based diagnosis and therapy. Int J Mol Sci. 2013;14(5):10412–10437.
  34. Casagrande F, Cocco E, Bellone S, et al. Eradication of chemotherapy-resistant CD44+ human ovarian cancer stem cells in mice by intraperitoneal administration of Clostridium perfringens enterotoxin. Cancer. 2011;117(24):5519–5528.
  35. Hashimoto Y, Yagi K, Kondoh M. Roles of the first-generation claudin binder, Clostridium perfringens enterotoxin, in the diagnosis and claudin-targeted treatment of epithelium-derived cancers. Pflugers Arch. 2016. doi:10.1007/s00424-016-1878-6
  36. Rauh-Hain JA, Guseh SH, Esselen KM, et al. Patterns of recurrence in patients treated with bevacizumab in the primary treatment of advanced epithelial ovarian cancer. Int J Gynecol Cancer. 2013;23(7): 1219–1225.
  37. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–827.
  38. Chau CH, Figg WD. Angiogenesis inhibitors increase tumor stem cells. Cancer Biol Ther. 2012;13(8):586–587.
  39. Conley SJ, Gheordunescu E, Kakarala P, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA. 2012;109(8):2784–2789.
  40. Wagner SC, Ichim TE, Ma H, et al. Cancer anti-angiogenesis vaccines: Is the tumor vasculature antigenically unique? J Transl Med. 2015;13:340. doi:10.1186/s12967-015-0688-5