Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2018, vol. 27, nr 5, May, p. 725–730

doi: 10.17219/acem/68631

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Multiple primary lung cancer: A literature review

Anna M. Romaszko1,A,B,C,D,E,F, Anna Doboszyńska1,A,B,C,D,E,F

1 Department of Pulmonary Medicine and Infectious Diseases, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland


Nowadays, lung cancer is a leading cause of death in both men and women worldwide. There is no clear explanation for its mortality rate. However, it is already known that genetic and environmental factors as well as oncological treatment are involved. As the incidence of lung cancer soars, the number of patients diagnosed with multiple primary lung cancers (MPLC) is also rising. While differentiating between MPLC and intrapulmonary metastasis of lung cancer is important for treatment strategy and prognosis, it is also quite complicated, particularly in the cases with similar histologies. It is also important not to delay the diagnosis. The aim of this paper was to discuss MPLC in general, and the differentiation between MPLC and intrapulmonary lung cancer metastasis in particular. Based on a review of statistical data and the current literature, we discuss the diagnostic criteria and the molecular, genetic and radiographic methods used to distinguish between MPLC and intrapulmonary metastases.

Key words

lung cancer, intrapulmonary metastasis, multiple primary lung cancer

References (60)

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.
  2. World Health Organization. Cancer fact sheet, 2010. Accessed May 30, 2016.
  3. Griffioen GH, Lagerwaard FJ, Haasbeek CJ, Smit EF, Slotman BJ, Senan S. Treatment of multiple primary lung cancers using stereotactic radiotherapy, either with or without surgery. Radiother Oncol. 2013;107:403–408.
  4. Antakli T, Schaefer RF, Rutherford JE, Read RC. Second primary lung cancer. Ann Thorac Surg. 1995;59:863–836.
  5. Riquet M, Cazes A, Pfeuty K, et al. Multiple lung cancers prognosis: What about histology? Ann Thorac Surg. 2008;86:921–926.
  6. Martini N, Melamed M. Multiple primary lung cancers. J Thorac Cardiovasc Surg. 1975;70:606–612.
  7. Tsunezuka Y, Matsumoto I, Tamura M, et al. The results of therapy for bilateral multiple primary lung cancers: 30 years’ experience in a single centre. Eur J Surg Oncol. 2004;30:781–785.
  8. Billroth T. General surgical pathology and therapy: Guidance for students and physicians. Lecture [in Russian]. Khirurgiia. 1991;10:136–143.
  9. Beyreuther H. Multiplicität von Carcinomen bei einem Fall von sog. “Schneeberger” Lungenkrebs mit Tuberkulose. Virchows Arch Pathol Anat Physiol Klin Med. 1924;250:230–243.
  10. Polednak AP. Obtaining smoking histories for population based studies on multiple primary cancers: Connecticut, 2002. Int J ­Cancer. 2006; 119:233–235.
  11. Fontham ET, Correa P, Reynolds P, et al. Environmental tobacco smoke and lung cancer in nonsmoking women: A multicenter study. JAMA. 1994;271:1752–1759.
  12. Alberg AJ, Samet JM. Epidemiology of lung cancer. Chest. 2003;123: 21S–49S.
  13. Tong L, Spitz MR, Fueger JJ, Amos CI. Lung carcinoma in former smokers. Cancer. 1996;78:1004–1010.
  14. Johnson BE. Second lung cancers in patients after treatment for an initial lung cancer. J Natl Cancer Inst. 1998;90:1335–1345.
  15. Li X, Hemminki K. Familial and second lung cancers: A nationwide epidemiologic study from Sweden. Lung Cancer. 2003;39:255.
  16. Van Bodegom PC, Wagenaar S, Corrin B, Baak J, Berkel J, Vanderschueren R. Second primary lung cancer: Importance of long term follow up. Thorax. 1989;44:788–793.
  17. El-Telbany A, Ma PC. Cancer genes in lung cancer racial disparities: Are there any? Genes Cancer. 2012;3:467–480.
  18. Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455:1069–1075.
  19. Han HS, Eom DW, Kim JH, et al. EGFR mutation status in primary lung adenocarcinomas and corresponding metastatic lesions: Discordance in pleural metastases. Clin Lung Cancer. 2011;12:380–386.
  20. Vaz D, Conde S, Tente D, Machado JC, Barroso A. Role of epidermal growth factor mutational status for distinction between recurrent lung cancer and second primary lung cancer: Case report. Clin Respir J. 2017;11(6):854–858.
  21. Yang Y, Shi C, Sun H, et al. Elderly male smokers with right lung tumors are viable candidates for KRAS mutation screening. Sci Rep. 2016;6: 18566. doi:10.1038/srep18566
  22. Yang Y, Yin W, He W, et al. Phenotype-genotype correlation in multiple primary lung cancer patients in China. Sci Rep. 2016;6:36177. doi:10.1038/srep36177
  23. Wang L, Hu H, Pan Y, et al. PIK3CA mutations frequently coexist with EGFR/KRAS mutations in non-small cell lung cancer and suggest poor prognosis in EGFR/KRAS wildtype subgroup. PloS One. 2014;9(2):e88291.
  24. Aviel-Ronen S, Blackhall FH, Shepherd FA, Tsao MS. K-ras mutations in non-small-cell lung carcinoma: A review. Clin Lung Cancer. 2006;8: 30–38.
  25. Riely GJ, Kris MG, Rosenbaum D, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008;14:5731–5734.
  26. Yoon HJ, Lee HY, Han J, Choi YL. Synchronous triple primary lung cancers: A case report. Korean J Radiol. 2014;15:646–650.
  27. Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature. 1998;391:184–187.
  28. Sanchez-Cespedes M, Parrella P, Esteller M, et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 2002;62:3659–3662.
  29. Paik PK, Arcila ME, Fara M, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29:2046–2051.
  30. Naoki K, Chen TH, Richards WG, Sugarbaker DJ, Meyerson M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 2002;62:7001–7003.
  31. Kawano O, Sasaki H, Endo K, et al. PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer. 2006;54:209–215.
  32. Bergethon K, Shaw AT, Ou SHI, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30:863–870.
  33. Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18:375–377.
  34. Warth A, Muley T, Dienemann H, et al. ROS1 expression and translocations in non-small-cell lung cancer: Clinicopathological analysis of 1478 cases. Histopathology. 2014;65:187–194.
  35. Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371:1963–1971.
  36. Pastorino U, Rossi M, Rosato V, et al. Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial. Eur J Cancer Prev. 2012;21:308.
  37. van Rens MT, Schramel FM, Elbers JR, Lammers JW. The clinical value of lung imaging fluorescence endoscopy for detecting synchronous lung cancer. Lung Cancer. 2001;32:13.
  38. Edge SB & American Joint Committee on Cancer. AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer-Verlag New York; 2017.
  39. Asamura H. Multiple primary cancers or multiple metastases, that is the question. J Thorac Oncol. 2010;5:930–931.
  40. Murphy SJ, Aubry MC, Harris FR, et al. Identification of independent primary tumors and intrapulmonary metastases using DNA rearrangements in non-small-cell lung cancer. J Clin Oncol. 2014;32:4050–4058.
  41. Rekhtman N, Borsu L, Reva B, et al. Unsuspected collision of synchronous lung adenocarcinomas: A potential cause of aberrant driver mutation profiles. J Thorac Oncol. 2014;9:e1–e3.
  42. Hiroshima K, Toyozaki T, Kohno H, Ohwada H, Fujisawa T. Synchronous and metachronous lung carcinomas: Molecular evidence for multicentricity. Pathol Int. 1998;48:869–876.
  43. Mitsudomi T, Yatabe Y, Koshikawa T, et al. Mutations of the P53 tumor suppressor gene as clonal marker for multiple primary lung cancers. J Thorac Cardiovasc Surg. 1997;114:354–360.
  44. Gazdar AF. The molecular and cellular basis of human tumors: A review. Cancer Res. 1990;50:1355–1360.
  45. Sozzi G, Miozzo M, Donghu R, et al. Deletion of 17p and p53 mutation in preneoplastic lesion of the lung. Cancer Res. 1992;52:6079–6082.
  46. Reichel MB, Oghaki H, Petersen I, Kleihues P. p53 mutation in primary human lung tumors and their metastases. Mol Carcinog. 1986;89: 25s–32s.
  47. Wainscoat JS, Fey MF. Assessment of clonality in human tumor: A review. Cancer Res. 1990;50:1355–1360.
  48. Geurts TW, Nederlof PM, van den Brekel MW, et al. Pulmonary squamous cell carcinoma following head and neck squamous cell carcinoma: Metastasis or second primary? Clin Cancer Res. 2005;11:6608–6614.
  49. Shen C, Wang X, Tian L, Che G. Microsatellite alteration in multiple primary lung cancer. J Thorac Dis. 2014;6:1499.
  50. Dacic S, Ionescu DN, Finkelstein S, Yousem SA. Patterns of allelic loss of synchronous adenocarcinomas of the lung. Am J Surg Pathol. 2005;29:897–902.
  51. Shen C, Wang X, Tian L, et al. “Different trend” in multiple primary lung cancer and intrapulmonary metastasis. Eur J Med Res. 2015;20:17.
  52. Wang X, Wang M, MacLennan GT, et al. Evidence for common clonal origin of multifocal lung cancers. J Natl Cancer Inst. 2009;101:560–570.
  53. Liu Y, Zhang J, Li L, et al. Genomic heterogeneity of multiple synchronous lung cancer. Nat Commun. 2016;7:13200.
  54. Takuwa T, Tanaka F, Yoneda K, et al. Diagnosis of synchronous primary lung adenocarcinomas based on epidermal growth factor (EGFR) gene status: A case report. Lung Cancer. 2010;68:498–500.
  55. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–957.
  56. Sharma N, Ray AK, Sharma S, et al. Segmentation and classification of medical images using texture primitive features: Application of BAM-type artificial neutral network. J Med Phys. 2008;33:119–126.
  57. Dennie C, Thornhill R, Sethi-Virmani V, et al. Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quant Imaging Med Surg. 2016;6(1):6–15.
  58. Dijkman BG, Schuurbiers OC, Vriens D, et al. The role of 18F-FDG PET in the differentiation between lung metastases and synchronous second primary lung tumors. Eur J Nucl Med Mol Imaging. 2010;37: 2037–2047.
  59. Hsu HH, Ko KH, Chou YC, et al. SUVmax and tumor size predict surgical outcome of synchronous multiple primary lung cancers. Medicine (Baltimore). 2016;95:e2351.
  60. Obando JA, Samii JM, Yasrebi M. A case of two synchronous primary lung tumors demostrated by FDG positron emission tomography. Clin Nucl Med. 2008;33:775–777.