Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2018, vol. 27, nr 10, October, p. 1447–1452

doi: 10.17219/acem/71054

Publication type: review article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

The pathogenesis and available prevention options in patients with diabetic thrombophilia

Jacek Kwiatkowski1,A,B,C,D,F, Jowita Halupczok-Żyła2,B,C,D,F, Marek Bolanowski2,E,F, Małgorzata Kuliszkiewicz-Janus1,E,F

1 Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Poland

2 Department and Clinic of Endocrinology, Diabetology and Isotope Therapy, Wroclaw Medical University, Poland


Diabetes mellitus (DM), a growing health problem itself, is accompanied by an increased risk of cardiovascular and thrombotic complications. The imbalance between coagulation and fibrinolysis processes observed in patients with diabetes may be defined as diabetic thrombophilia. Several mechanisms are involved in the hypercoagulability state in diabetics, including endothelial cell damage, altered platelet structure and function, increased microparticle formation, different structure of fibrin clots, disturbances in the activity of coagulation factors, fluctuations in the concentrations of fibrinolysis activators and inhibitors, and qualitative changes of proteins due to glycation and oxidation processes. These all are the reasons why DM is the most common cause of acquired thrombophilia. Moreover, diabetes changes the efficacy of certain medications. Results of various trials seem to suggest that thrombolytic drugs are less effective in patients suffering from this disease. The impact of DM on the effectiveness of treatment with acetylsalicylic acid (ASA) remains unclear. Awareness of thrombotic complications in diabetic patients may enable earlier diagnosis and proper therapy.

Key words

diabetic thrombophilia, diabetes mellitus, thrombosis, coagulation factors, hypercoagulability

References (54)

  1. Mannucci PM, Tripodi A, Bottasso B, et al. Markers of procoagulant imbalance in patients with inherited thrombophilic syndromes. Thromb Haemost. 1992;67(2):200–202.
  2. Grant PJ. Diabetes mellitus as a prothrombotic condition. J Intern Med. 2007;262(2):157–172.
  3. Kinalska I, Telejko B. Recent progress in diabetic thrombophilia prophylaxis and treatment [in Polish]. Diabetologia Praktyczna. 2003;4(2)153–159.
  4. Kadić D, Hasić S, Spahić E. Mean platelet volume predicts the glycemic control deterioration in diabetes mellitus type 2 patients. Med Glas (Zenica). 2016;13(1):1–7.
  5. Pasqualini L, Marchesi S, Vaudo G, et al. Association between endothelial dysfunction and major cardiovascular events in peripheral vascular disease. Vasa. 2003;32(3):139–143.
  6. Taylor A. Pathophysiology of hypertension and endothelial dysfunction in patients with diabetes mellitus. Endocrinol Metab Clin North Am. 2001;30:983–997.
  7. Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction: A clinical perspective. Endocr Rev. 2001;22(1):36–52.
  8. Hamed S, Brenner B, Roguin A. Nitric oxide: A key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2. Cardiovasc Res. 2011;91(1):9–15.
  9. Vazzana N, Ranalli P, Cuccurullo C, Davi G. Diabetes mellitus and thrombosis. Thromb Res. 2012;129(3):371–377.
  10. Kim J, Montagnani M, Kon Koh K, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–1904.
  11. Vinik AJ, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001;24(8):1476–1485.
  12. Alexandru N, Badila E, Weiss E, Cochior D, Stępień E, Georgescu A. Vascular complications in diabetes: Microparticles and microparticle-associated microRNAs as active players. Biochem Biophys Res Commun. 2016;472(1):1–10.
  13. Kundi H, Kiziltunc E, Ates I, et al. Association between plasma homocysteine levels and end-organ damage in newly diagnosed type 2 diabetes mellitus patients. Endocr Res. 2015;25:1–6.
  14. Akbas EM, Timuroglu A, Ozcicek A, et al. Association of uric acid, atherogenic index of plasma and albuminuria in diabetes mellitus. Int J Clin Exp Med. 2014;7(12):5737–5743.
  15. Yudkin J, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects. Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19:972–978.
  16. Margetic S. Inflammation and haemostasis. Biochem Med (Zagreb). 2012;22(1):49–62.
  17. Bretón-Romero R, Feng B, Holbrook M, et al. Endothelial dysfunction in human diabetes is mediated by Wnt5a-JNK signaling. Arterioscler Thromb Vasc Biol. 2016;36(3):561–569.
  18. Meigs JB, O’Donnell CJ, Tofler GH, et al. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: The Framingham Offspring Study. Diabetes. 2006;55(2):530–537.
  19. Leurs PB, Stolk RP, Hamulyak K, Van Oerle R, Grobbee DE, Wolffenbuttel BH. Tissue factor pathway inhibitor and other endothelium-dependent hemostatic factors in elderly individuals with normal or impaired glucose tolerance and type 2 diabetes. Diabetes Care. 2002;25(8):1340–1345.
  20. Odegaard AO, Jacobs DR, Sanchez OA, Goff DC Jr, Reiner AP, Gross MD. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovasc Diabetol. 2016;15:51.
  21. Sobol AB, Watala C. The role of platelets in diabetes-related vascular complications. Diabetes Res Clin Pract. 2000;50(1):1–16.
  22. Dinda AK, Kumar R, Saraya AK. Platelet hyperreactivity and vasculopathy in insulin dependent diabetes mellitus. Platelets. 1992;3(2):83–86.
  23. Trovati M, Anfossi G. Insulin, insulin resistance and platelet function: Similarities with insulin effect on cultured vascular smooth muscle cells. Diabetologia. 1998;41:609–622.
  24. Caimi G, Lo Presti R, Montana M, et al. Membrane fluidity, membrane lipid pattern, and cytosolic Ca2+ content in platelets from a group of type II diabetic patients with macrovascular complications. Diabetes Care. 1995;18(1):60–63.
  25. Ferreira IA, Eybrechts KL, Mocking AI, Kroner C, Akkerman JW. IRS-1 mediates inhibition of Ca2+ mobilization by insulin via the inhibitory G-protein Gi. J Biol Chem. 2004;279(5):3254–3264.
  26. Gerrits AJ, Koekman CA, van Haeften TW, Akkerman JWN. Platelet tissue factor synthesis in type 2 diabetic patients is resistant to inhibition by insulin. Diabetes. 2010;59(6):1487–1495.
  27. Tschoepe D, Rauch U, Schwippert B. Platelet–leukocyte cross-talk in diabetes mellitus. Horm Metab Res.1997;29:631–635.
  28. Santilli F, Simeone P, Liani R, Davi G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015;120:28–39.
  29. Soma P, Swanepoel AC, du Plooy JN, Mqoco T, Pretorius E. Flow cytometric analysis of platelets type 2 diabetes mellitus reveals
  30. Lundström A, Laska AC, Von Arbin M, Jörneskog G, Wallén H. Glucose intolerance and insulin resistance as predictors of low platelet response to clopidogrel in patients with minor ischemic stroke or TIA. Platelets. 2014; 25(2):102–110.
  31. Wilson P. Effect of fibrinogen degradation products on platelet aggregation. J Clin Pathol. 1968;21(2):147–153.
  32. Zhang D, Zhang X, Liu D, et al. Association between insulin receptor substrate-1 polymorphisms and high platelet reactivity with clopidogrel therapy in coronary artery disease patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2016;15:50.
  33. Buch A, Kaur S, Nair R, Jain A. Platelet volume indices as predictive biomarkers for diabetic complications in type 2 diabetic patients. J Lab Physicians. 2017;9(2):84–88.
  34. Kim HK, Kim JE, Park SH, Kim YI, Nam-Goong IS, Kim ES. High coagulation factor levels and low protein C levels contribute to enhanced thrombin generation in patients with diabetes who do not have macrovascular complications. J Diabetes Complications. 2014;28(3):365–369.
  35. Tripodi A, Branchi A, Chantarangkul V, et al. Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J Thromb Thrombolysis. 2011;31(2):165–172.
  36. Hess K. The vulnerable blood. Coagulation and clot structure in diabetes mellitus. Hamostaseologie. 2015;35(1):25–33.
  37. Hernestål-Boman J, Norberg M, Jansson JH, et al. Signs of dysregulated fibrinolysis precede the development of type 2 diabetes mellitus in a population-based study. Cardiovasc Diabetol. 2012;11:152.
  38. Ruszkowska-Ciastek B, Sokup A, Wernik T, et al. Low-grade risk of hypercoagulable state in patients suffering from diabetes mellitus type 2. J Zhejiang Univ Sci B. 2015;16(9):788–795.
  39. Bratseth V, Byrkjeland R, Njerve IU, Solheim S, Arnesen H, Seljeflot I. Procoagulant activity in patients with combined type 2 diabetes and coronary artery disease: No effects of long-term exercise training. Diab Vasc Dis Res. 2017;14(2):144–151.
  40. Lijnen HR, Collen D. Interaction of plasminogen activators and inhibitors with plasminogen and fibrin. Semin Thromb Hemost. 1982;8(1):2–10.
  41. Svensson J, Bergman AC, Adamson U, Blombäck M, Wallén H, Jörneskog G. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study. Biochem Biophys Res Commun. 2012;421(2):335–342.
  42. Alzahrani SH, Ajjan RA. Coagulation and fibrinolysis in diabetes. Diab Vasc Dis Res. 2010;7(4):260–273.
  43. Hess K, Alzahrani SH, Mathai M, et al. A novel mechanism for hypofibrinolysis in diabetes: The role of complement C3. Diabetologia. 2012;55(4):1103–1113.
  44. Hori Y, Gabazza EC, Yano Y, et al. Insulin resistance is associated with increased circulating level of thrombin-activatable fibrinolysis inhibitor in type 2 diabetic patients. J Clin Endocrinol Metab. 2002;87(2):660–665.
  45. Bell EJ, Selvin E, Lutsey PL, Nambi V, Cushman M, Folsom AR. Glycemia (hemoglobin A1c) and incident venous thromboembolism in the Atherosclerosis Risk in Communities cohort study. Vasc Med. 2013;18(5):245–250.
  46. Gogitidze Joy N, Hedrington MS, Briscoe VJ, Tate DB, Ertl AC, Davis SN. Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care. 2010;33(7):1529–1535.
  47. Jung JH, Tantry US, Gurbel PA, Jeong Y-H. Current antiplatelet treatment strategy in patients with diabetes mellitus. Diabetes Metab J. 2015; 39(2):95–113.
  48. Bhatt DL, Marso SP, Hirsch AT, Ringleb PA, Hacke W, Topol EJ. Amplified benefit of clopidogrel versus aspirin in patients with diabetes mellitus. Am J Cardiol. 2002;90(6):625–628.
  49. Wiviott SD, Braunwald E, Angiolillo DJ, et al. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-thrombolysis in myocardial infarction 38. Circulation. 2008;118(16):1626–1636.
  50. Perkan A, Vitrella G, Barbati G, et al. Impact of abciximab on prognosis in diabetic patients undergoing primary percutaneous coronary intervention. J Cardiovasc Med (Hagerstown). 2013;14(2):127–135.
  51. Bansilal S, Bloomgarden Z, Halperin JL, et al.; ROCKET AF Steering Committee and Investigators. Efficacy and safety of rivaroxaban in patients with diabetes and nonvalvular atrial fibrillation: The Rivaroxaban Once-daily, Oral, Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF Trial). Am Heart J. 2015;170(4):675–682.
  52. Morrow DA, Antman EM, Murphy SA, et al.; TIMI Study Group. Effect of enoxaparin versus unfractionated heparin in diabetic patients with ST-elevation myocardial infarction in the Enoxaparin and Thrombolysis Reperfusion for Acute Myocardial Infarction Treatment-Thrombolysis In Myocardial Infarction study 25 (ExTRACT-TIMI 25) trial. Am Heart J. 2007; 154(6):1078–1084.
  53. Masoomi M, Samadi S, Sheikhvatan M. Thrombolytic effect of streptokinase infusion assessed by ST-segment resolution between diabetic and non-diabetic myocardial infarction patients. Cardiol J. 2012; 19(2):168–173.
  54. Strbian D, Piironen K, Meretoja A, et al.; Helsinki Stroke Thrombolysis Registry Group. Intravenous thrombolysis for acute ischemic stroke patients presenting with mild symptoms. Int J Stroke. 2013;8(5):293–299.