Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2016, vol. 25, nr 4, July-August, p. 605–609

doi: 10.17219/acem/61899

Publication type: original article

Language: English

Download citation:

  • BIBTEX (JabRef, Mendeley)
  • RIS (Papers, Reference Manager, RefWorks, Zotero)

Quantitative Anatomy of the Trapezius Muscle in the Human Fetus

Mateusz Badura1,A,B,C,D, Magdalena Grzonkowska1,A,B,C,D, Mariusz Baumgart1,B,C, Michał Szpinda1,D,E,F

1 Department of Normal Anatomy, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, The Nicolaus Copernicus University in Toruń, Poland

Abstract

Background. The trapezius muscle consists of three parts that are capable of functioning independently. Its superior part together with the levator scapulae and rhomboids elevate the shoulder, the middle part retracts the scapula, while the inferior part lowers the shoulder.
Objectives. The present study aimed to supplement numerical data and to provide growth dynamics of the trapezius in the human fetus.
Material and Methods. Using methods of anatomical dissection, digital image analysis (NIS Elements AR 3.0), and statistics (Student’s t-test, regression analysis), we measured the length, the width and the surface area of the trapezius in 30 fetuses of both sexes (13™ k,17™ … ) aged 13–19 weeks.
Results. Neither sex nor laterality differences were found. All the studied parameters of the trapezius increased proportionately with age. The linear functions were computed as follows: y = –103.288 + 10.514 × age (r = 0.957) for total length of the trapezius muscle, y = –67.439 + 6.689 × age (r = 0.856) for length of its descending part, y = –8.493 + 1.033 × age (r = 0.53) for length of its transverse part, y = –27.545 + 2.802 × age (r = 0.791) for length of its ascending part, y = –19.970 + 2.505 × age (r = 0.875) for width of the trapezius muscle, and y = –2670.458 + 212.029 × age (r = 0.915) for its surface area.
Conclusion. Neither sex nor laterality differences exist in the numerical data of the trapezius muscle in the human fetus. The descending part of trapezius is the longest, while its transverse part is the shortest. The growth dynamics of the fetal trapezius muscle follows proportionately.

Key words

surface area, human fetuses, trapezius muscle, length, width

References (29)

  1. Holtermann A, Roeleveld K, Mork PJ, Grönlund C, Karlsson JS, Andersen LL, Olsen HB, Zebis MK, Sjøgaard G, Søgaard K: Selective activation of neuromuscular compartments within the human trapezius muscle. J Electromyogr Kinesiol 2009, 19, 896–902.
  2. Nooij LS, Oostra RJ: Trapezius aplasia: Indications for a dual developmental origin of the trapezius muscle. Clin Anat 2006, 19, 547–549.
  3. Emsley JG, Davis MD: Partial unilateral absence of the trapezius muscle in a human cadaver. Clin Anat 2001, 14, 383–386.
  4. Garbelotti Júnior SA, Rodrigues CF, Sgrott EA, Prates JC: Unilateral absence of the thoracic part of the trapezius muscle. Surg Radiol Anat 2001, 23, 131–133.
  5. Paraskevas GK, Natsis K, Ioannidis O: Accessory cleido-occipitalis muscle: Case report and review of the literature. Rom J Morphol Embryol 2013, 54, 893–895.
  6. Wallden M: The trapezius – clinical & conditioning controversies. J Body Mov Ther 2014, 18, 282–291.
  7. Pu YM, Tang EY, Yang XD: Trapezius muscle innervation from the spinal accessory nerve and branches of the cervical plexus. Int J Oral Maxillofac Surg 2008, 37, 567–572.
  8. Noussios G: The variational anatomy of the trapezius muscle: A review of the literature. Internet J Hum Anat 2014, 3, 1–4.
  9. Paine RM, Voight M: The Role of the Scapula. JOSPT 1993, 18, 386–391.
  10. Nakamura T, Murakami G, Noriyasu S, Yoshio M, Sato I, Uchiyama E: Morphometrical study of arteries and veins in the human sheet-like muscles (pectoralis major, latissimus dorsi, gluteus maximus and trapezius) with special reference to a paradoxical venous merging pattern of the trapezius. Ann Anat 2006, 188, 243–253.
  11. Kędzia A, Herlender M, Tomczyk M, Dudek K: Musculus trapezius metrology in foetal period. Arch Perinatal Med 2010, 16, 140–146.
  12. Stemper BD, Baisden JL, Yoganandan N, Pintar FA, Paskoff GR, Shender BS: Determination of normative neck muscle morphometry using upright MRI with comparison to supine data. Aviat Space Environ Med 2010, 81, 878–882.
  13. Vangsgaard S, Nørgaard LT, Madeleine P, Taylor PJL: Crossed responses found in human trapezius muscle are not H-reflexes. Muscle Nerve 2014, 49, 362–369.
  14. Kwak HH, Kim HJ, Youn KH, Park HD, Chung IH: An anatomic variation of the trapezius muscle in a Korean: The cleido-occipitalis cervicalis. Yonsei Med 2003, 30, 1098–1100.
  15. Bergin M, Elliott J, Jull G: Absence of the inferior portion of the trapezius muscle in three family members. Manual Ther 2011, 16, 629–635.
  16. Symes A, Ellis H: Variations in the surface anatomy of the spinal accessory nerve in the posterior triangle. Surg Radiol Anat 2005, 27, 404–408.
  17. Soo KC, Strong EW, Spiro RH, Shan JP, Nori S, Green RF: Innervation of the trapezius muscle by the intraoperative measurement of motor action potentials. Head Neck 1993, 15, 216–221.
  18. Nori S, Soo KC, Green RF, Strong EW, Miodownik S: Utilization of intraoperative electroneurography to understand the innervation of the trapezius muscle. Muscle Nerve 1997, 20, 279–285.
  19. Kierner AC, Burian M, Bentzien S, Gstoettner W: Intraoperative electromyography for identification of the trapezius muscle innervation: Clinical proof of a new anatomical concept. Laryngoscope 2002, 112, 1853–1856.
  20. Kierner AC, Zelenka I, Burian M: How do the cervical plexus and the spinal accessory nerve contribute to the innervation of the trapezius muscle? Arch Otolaryngol Head Neck Surg 2001, 127, 1230–1232.
  21. Gupta Ch, Ray B, D’Souza AS, Murlimanju BV: Accessory nerve: Topographic study of its spinal root in human foetuses root in human foetuses. J Morphol Sci 2012, 29, 82–86.
  22. Andersen L, Hansen K, Mortensen OS, Zebis MK: Prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain. BMC Musculoskeletal Dis 2011, 12, 1–8.
  23. Grzonkowska M, Badura M, Lisiecki J, Szpinda M, Baumgart M, Wiśniewski M: Growth dynamics of the triceps brachii muscle in the human fetus. Adv Clin Exp Med 2014, 23, 177–184.
  24. Szpinda M, Paruszewska-Achtel M, Dąbrowska M, Badura M, Elminowska-Wenda G, Sobolewska A, Szpinda A: The normal growth of the biceps brachii muscle in human fetuses. Adv Clin Exp Med 2013, 22, 17–26.
  25. Szpinda M, Paruszewska-Achtel M, Baumgart M, Sobolewska M, Eliminowska-Wenda G: Quantitative growth of the human deltoid muscle in human foetuses. Med Biol Sci 2011, 25, 59–64.
  26. Badura M, Wiśniewski M, Szpinda M, Siedlaczek W: The growth of the semitendinosus muscle in human foetuses. Med Biol Sci 2011, 25, 17–21.
  27. Badura M, Wiśniewski M, Szpinda M, Siedlaczek W, Ufnal-Brzozowska S: Developmental dynamics of the semimembranosus muscle in human foetuses. Med Biol Sci 2011, 25, 13–16.
  28. Szpinda M, Wiśniewski M, Rolka Ł: The biceps femoris muscle in human foetuses – a morphometric, digital and statistical study. Adv Clin Exp Med 2011, 20, 575–582.
  29. O’Sullivan C, Bentman S, Bennett K, Stokes M: Rehabilitative ultrasound imaging of the lower trapezius muscle: Technical description and reliability. J Orthop Sports Phys Ther 2007, 37, 620–626.