Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.4)
Index Copernicus  – 161.11; MEiN – 140 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2013, vol. 22, nr 6, November-December, p. 795–800

Publication type: original article

Language: English

The Effect of Valdecoxib on the Production of Growth Factors Evoked by Hypoxia and Bacterial Lipopolysaccharide in HMEC-1 Cells

Wpływ waldekoksybu na wydzielanie czynników wzrostu wywołane hipoksją i bakteryjnym lipopolisacharydem w komórkach HMEC-1

Anna Wiktorowska-Owczare1,K

1 Department of Pharmacology, Chair of Pharmacology and Clinical Pharmacology, Medical University of Lodz, Poland

Abstract

Background. Endothelial cells produce prostaglandins (PGE2 and PGI2) and growth factors (VEGF and bFGF). These substances regulate proliferation of cells, inflammatory processes and neovascularization under physiological and pathological conditions.
Objectives. The aim of this study was to check whether valdecoxib – a selective COX-2 inhibitor – inhibits VEGF and/or bFGF secretion in the presence of LPS or cobalt chloride in normal human microvascular endothelial cells (HMEC-1).
Material and Methods. HMEC-1 cells were treated with valdecoxib at a concentration of 10 and 100 µM in the presence of 100 µg/mL LPS or 200 µM CoCl2. The effect of NSAIDs and LPS on VEGF and bFGF proteins was analyzed by ELISA kit (R&D Systems). Cell viability was measured using the 3-[4.5-dimethylthiazol-2-yl]-2.5- -diphenyltetrazolium bromide (MTT) method.
Results. Valdecoxib inhibited LPS-induced proliferation of endothelial cells and bFGF secretion in a dose-dependent manner. Valdecoxib stimulated VEGF formation via HMEC-1 under inflammatory conditions.
Conclusion. Ultimately, the anti-angiogenic effect of the selective COX-2 inhibitor was a result of inhibition of HMEC-1 cell proliferation and bFGF generation under inflammatory conditions

Streszczenie

Wprowadzenie.Komórki śródbłonka wytwarzają prostaglandyny (PGE2 i PGI2) i czynniki wzrostu (VEGF i bFGF). Te substancje regulują proliferację komórek, proces zapalny oraz neowaskularyzację w warunkach fizjologicznych i patologicznych.
Cel pracy. Sprawdzenie czy waldekoksyb – selektywny COX-2 inhibitor hamuje wydzielanie VEGF i/lub bFGF w obecności LPS lub chlorku kobaltu w linii komórkowej śródbłonka HMEC-1.
Materiał i metody. Komórki HMEC-1 były inkubowane z waldekoksybem w stężeniach 10 i 100 µM w obecności 100 µg/ml LPS lub 200 µM CoCl2. Efekt NLPZ-tu i LPS na wydzielanie VEGF i bFGF był analizowany za pomocą ELISA kitu (R & D system). Żywotność komórek była mierzona testem MTT.
Wyniki. Waldekoksyb zahamował proliferację komórek śródbłonka indukowaną LPS oraz wydzielanie bFGF w sposób zależny od dawki. Jednocześnie waldekoksyb pobudzał tworzenie VEGF przez HMEC-1 w warunkach zapalenia.
Wnioski. Ostatecznie antyangiogenne działanie selektywnego inhibitora COX-2 było rezultatem zahamowania proliferacji komórek HMEC-1 i tworzenia bFGF w warunkach zapalenia

Key words

LPS, VEGF, bFGF, valdecoxib, endothelial cells.

Słowa kluczowe

LPS, VEGF, bFGF, waldekoksyb, komórki śródbłonka.

References (25)

  1. Jones MK, Szabo IL, Kawanaka H, Husain SS, Tarnawski AS: Von Hippel-Lindau tumor suppressor and HIF-1α: a new targets of NSAIDs inhibition of hypoxia-induced angiogenesis. FASEB J 2001, 16, 264–266.
  2. Loboda A, Jazwa A, Wegiel B, Jozkowicz A, Dulak J: Heme oxygenase-1-dependent and -independent regulation of angiogenic expression: effect of cobalt protoporphyrin and cobalt chloride on VEGF and IL-8 synthesis in human microvascular endothelial cells. Cell Mol Biol 2005, 51, 347–355.
  3. Semenza GL: Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol 2010, 30, 648–652.
  4. Cucina A, Borrelli V, Randone B, Coluccia P, Sapienza P, Cavallaro A: Vascular endothelial growth factor increases the migration and proliferation of smooth muscle cells through the mediation of growth factors released by endothelial cells. J Surg Res 2003, 109, 16–23.
  5. Ferrara N: Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 2002, 29, 10–14.
  6. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999, 13, 9–22.
  7. Powers CJ, McLeskey SW, Wellstein A: Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000, 7, 165–197.
  8. Beenken A, Mohammadi M: The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009, 8, 235–253.
  9. Cotton LM, O’Bryan MK, Hinton BT: Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev 2008, 29, 193–216.
  10. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M: Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005, 16, 159–178.
  11. Martich GD, Boujoukos AJ, Suffredini AF: Response of man to endotoxin. Immunobiology 1993, 187, 403–416.
  12. Vane JR, Botting RM: Anti-inflammatory drugs and their mechanism of action. Inflamm Res 1998, 47, S78–S87.
  13. Flis S, Soltysiak-Pawluczuk D, Jedrych A, Jastrzebski Z, Remiszewska M, Splawinski J: Antiangiogenic effect of sulindac sulfide could be secondary to induction of apoptosis and cell cycle arrest. Anticancer Res 2006, 26, 3033–3042.
  14. Wiktorowska-Owczarek A, Jóźwiak-Bębenista M, Nowak JZ: Effects of hypoxia on cyclic AMP signaling and VEGF/bFGF generation in different types of cultured cells. Pharmacol Rep 2011, 63, 574–575.
  15. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ: HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 1992, 99, 683–690.
  16. Namiecinska M, Wiktorowska-Owczarek A, Loboda A, Dulak J, Nowak JZ: Cyclic AMP generating system in human microvascular endothelium is highly responsive to adrenaline. Pharmacol Rep 2006, 58, 884–889.
  17. Palayoor ST, Tofilon PJ, Coleman CN: Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1α and HIF-2α in prostate cancer cells. Clin Cancer Res 2003, 9, 3150–3157.
  18. Akarasereenont P, Mitchell JA, Appleton J, Thiemermann C, Vane JR: Involvement of tyrosine kinase in the induction of cyclo-oxygenase and nitric oxidase synthase by endotoxin in cultured cells. Br J Pharmacol 1994, 113, 1522–1528.
  19. Rifkin DB, Moscatelli D: Recent developments in the cell biology of basic fibroblast growth factor. J Cell Biol 1989, 109, 1.
  20. Niederburger E, Manderscheid C, Grosch S, Schmidt H, Ehnert C, Geisslinger G: Effects of selective COX-2 inhibitors celecoxib and rofecoxib on human vascular cells. Biochem Pharmacol 2004, 68, 341–350.
  21. Boonmasawai S, Akarasereenont P, Techatraisak K, Thaworn A, Chotewuttakorn S, Palo T: Effects of selective COX-inhibitors and classical NSAIDs on endothelial cell proliferation and migration induced by human cholangiocarcinoma cell culture. J Med Assoc Thai 2009, 92, 1508–1515.
  22. Chen Q, LiuWL, Guo X, Li YJ, Guo ZG: Biphasic effect of aspirin on apoptosis of bovine vascular endothelial cells and its molecular mechanism. Acta Pharmacol Sin 2007, 28, 353–358.
  23. Akarasereenont P, Bakhle YS, Thiemermann C, Vane JR: Cytokine-mediated induction of cyclo-oxygenase-2 by activation of tyrosine kinase in bovine endothelial cells stimulated by bacterial lipopolysaccharide. Br J Pharmacol 1995, 115, 401–408.
  24. Zhao X, Yue Y, Cheng W, Li J, Hu Y, Qin L, Zhang P: Hypoxia-inducible factor a potential therapeutic target for rheumatoid arthritis. Curr Drug Targets 2013, 14, 700–707.
  25. Woods JM, Mogollon A, Amin MA, Martinez RJ, Koch AE: The role of COX-2 in angiogenesis and rheumatoid arthritis. Exp Mol Pathol 2003, 74, 282–290.