Advances in Clinical and Experimental Medicine
2013, vol. 22, nr 1, January-February, p. 77–83
Publication type: original article
Language: English
Solute Transport at the Start of Peritoneal Dialysis and the Risk of Peritonitis
Transport otrzewnowy podczas rozpoczęcia leczenia dializą otrzewnową a ryzyko wystąpienia zapalenia otrzewnej
1 Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
2 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
3 Department of General Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
Abstract
Background. In peritoneal dialysis (PD) approximately 40% of ultrafiltration (UF) during hypertonic dwell (miniPET test) occurs as free water transport (FWT) through water channels, mainly aquaporin-1. Experimental studies have shown that aquaporin-1 plays a role in cell migration and inflammatory response.
Objectives. The purpose of the study was to evaluate if FWT is associated with the incidence of PD-related peritonitis.
Material and Methods. Standard PET and mini-PET tests were performed on 27 patients at the onset of PD. Clinical data was reviewed and PET transport parameters calculated. The peritonitis rate was assessed and the group of patients was divided into the subgroups of peritonitis-free patients (n = 18) and patients with peritonitis episode (n = 9).
Results. Solute transport, measured as D/P creatinine during the PET test was significantly higher in the group of patients with peritonitis episode than in the group of peritonitis-free patients (0.77 ± 0.12 vs. 0.66 ± 0.11, p = 0.02). In the mini-PET test, there was a tendency to have higher solute transport in the group of patients with peritonitis episode compared to the group of peritonitis-free patients (0.61 ± 0.13 vs. 0.51 ± 0.1, p = 0.07). Ultrafiltration (mL) in the mini-PET test was slightly higher in the group of peritonitis-free patients (642 ± 178 vs. 488.9 ± 161.6, p = 0.06). FWT was not different between the two groups.
Conclusion. Higher solute transport at the start of PD may be associated with the risk of peritonitis.
Streszczenie
Wprowadzenie.W dializie otrzewnowej (DO) około 40% uzyskiwanej ultrafiltracji w czasie wymiany z hipertonicznym roztworem glukozy (test mini-PET) odbywa się na drodze transportu wolnej wody przez kanały wodne, głównie akwaporynę 1. W badaniach doświadczalnych wykazano, że akwaporyna-1 odgrywa również rolę w migracji komórek i odpowiedzi na stan zapalny.
Cel pracy. Ocena, czy wielkość transportu wolnej wody jest związana z częstością występowania zależnego od dializy zapalenia otrzewnej.
Materiał i metody. Standardowy test PET oraz mini-PET wykonano u 27 pacjentów rozpoczynających leczenie nerkozastępcze metodą dializy otrzewnowej. Zanalizowano dane kliniczne oraz parametry transportu w obu testach. Obliczono częstość występowania zapalenia otrzewnej, a grupę pacjentów podzielono na podgrupę pacjentów, u których nie obserwowano zapaleń otrzewnej (n = 18) i podgrupę pacjentów z zapaleniem otrzewnej (n = 9).
Wyniki. Transport, mierzony jako stosunek D/P dla kreatyniny w teście PET był znacząco większy w podgrupie pacjentów z zapaleniem otrzewnej niż w podgrupie pacjentów bez zapalenia (0,77 ± 0,12 vs 0,66 ± 0,11, p = 0,02). W teście mini-PET stwierdzono tendencję do wyższych wartości transportu otrzewnowego w podgrupie pacjentów z zapaleniem otrzewnej w porównaniu do podgrupy pacjentów bez zapalenia (0,61 ± 0,13 vs 0,51 ± 0,1, p = 0,07). Ultrafiltracja (mL) w teście mini-PET była nieco większa w podgrupie pacjentów bez zapalenia otrzewnej (642 ± 178 vs 488,9 ± 161,6, p = 0,06). Transport wolnej wody nie różnił się znacząco między dwoma podgrupami.
Wnioski. Większy transport otrzewnowy u pacjentów rozpoczynających dializoterapię otrzewnową może wiązać się z większym ryzykiem wystąpienia zapalenia otrzewnej.
Key words
aquaporin-1, free water transport, peritoneal dialysis, peritonitis, solute transport.
Słowa kluczowe
akwaporyna-1, transport wolnej wody, dializa otrzewnowa, zapalenie otrzewnej, transport otrzewnowy.
References (32)
- Krane CM, Goldstein DL: Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans. Mamm Genome 2007, 18, 452–462.
- Preston GM, Agre P: Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci 1991, 88, 11110–11114.
- Mobasheri A, Marples D: Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 2004, 286, 529–537.
- Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoushi Y: Structural determinants of water permeation through aquaporin-1. Nature 2000, 407, 599–605.
- Nishino T, Devuyst O: Clinical application of aquaporin research: aquaporin-1 in the peritoneal membrane. Eur J Physiol 2008, 456, 721–727.
- Yong-Lim K: Update on mechanisms of ultrafiltration failure. Perit Dial Int 2009, 29 (S2), 123–127.
- Devuyst O, Yool AJ: Aquaporin-1: new developments and perspectives for peritoneal dialysis. Perit Dial Int 2010, 30 (2), 135–141.
- Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS: Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 2005, 434, 786–792.
- Nishino T, van Loo G, Moulin P, Beyaert R, Verkman AS, Devuyst O: Aquaporin-1 modulates vascular proliferation and inflammatory response during acute infection. J Am Soc Nephrol 2007, 18, 112A.
- Grassmann A, Gioberge S, Moeller S, Brown G: ESRD patients in 2004: Global overview of patient numbers, treatment modalities and associated trends. Nephrol Dial Transplant 2005, 20, 2587–2593.
- Parikova A, Smit W, Zweers MM, Struijk DG, Krediet RT: Free water transport, small pore transport and the osmotic pressure gradient. Nephrol Dial Transplant 2008, 23, 2350–2355.
- Rippe B: Free water transport, small pore transport and the osmotic pressure gradient three pore model of peritoneal transport. Nephrol Dial Transplant 2008, 23, 2147–2153.
- Sobiecka D, Waniewski J, Weryński A, Lindholm B: Peritoneal fluid transport in CAPD patients with different transport rates for small solutes. Perit Dial Int 2004, 24, 240–251.
- Waniewski J, Stachowska-Pietka J, Debowska M, Lindholm B: Free water transport and sieving coefficient for sodium in peritoneal dialysis. Pol Merk Lek 2006, 122, 188–191.
- La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell’Oro C, Andrulli S, Locatelli S: Mini-peritoneal equilibration test. A simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kid Int 2005, 68, 840–846.
- Fuβholler A, Zur Nieden S, Grabensee B, Plum J: Peritoneal fluid and solute transport: influence of treatment time, peritoneal dialysis modality, and peritonitis incidence. J Am Soc Nephrol 2002, 13, 1055–1060.
- Davies SJ, Bryan J, Phillips L, Russel GI: Longitudinal changes in peritoneal kinetics: The effect of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996, 11, 498–506.
- Thodis E, Passadakis P, Vargemezis V, Oreopoulos DG: Peritoneal dialysis: better than, equal to, or worse than hemodialysis? Data worth knowing before choosing a dialysis modality. Perit Dial Int 2001, 21, 25–35.
- Holley JL, Bernardini J, Perlmutter JA, Piraino B: A comparison of infection rates among older and younger patients on continuous peritoneal dialysis. Perit Dial Int 1994, 14, 66–69.
- McDonald SP, Collins JF, Rumpsfeld M, Johnson DW: Obesity is a risk factor for peritonitis in the Australian and New Zealand peritoneal dialysis patient populations. Perit Dial Int 2004, 24, 340–346.
- De Fijter CW, Oe LP, Nauta JJ, van der Meulen J, Verbrugh HA, Verhoef J, Donker AJ: Clinical efficacy and morbidity associated with continuous cyclic compared with continuous ambulatory peritoneal dialysis. Ann Intern Med 1994, 120, 264–271.
- Oo TN, Roberts TL, Collins AJ: A comparison of peritonitis rates from the United States Renal Data System database: CAPD versus continuous cycling peritoneal dialysis patients. Am J Kid Dis 2005, 45, 372–380.
- Twardowski ZJ, Nolph KD, Khanna R, Prowant BF, Ryan LP, Moore HL, Nielsen MP: Peritoneal equilibration test. Perit Dial Bull 1987, 7, 138–147.
- Piraino B, Bailie GR, Bernardini J, Boeschoten E, Gupta A, Holmes C, Kuijper EJ, Li PK, Lye WC, Mujais S, Paterson DL, Fontan MP, Ramos A, Schaefer F, Uttley L: ISPD guidelines/recommendations. Peritoneal dialysis-related infections recommendations: 2005 update. Perit Dial Int 2005, 25, 107–131.
- Chow KM, Szeto CC, Leung CB, Law MC, Li PK: Impact of social factors on patients on peritoneal dialysis. Nephrol Dial Transplant 2005, 20, 2504–2510.
- Lobo JVD, Villar KR, Junior MPA, Bastos KA: Predictor factors of peritoneal dialysis-related peritonitis. J Bras Nephrol 2010, 32, 156–164.
- Wang Q, Bernardini J, Piraino B, Fried L: Albumin at the start of peritoneal dialysis predicts the development of peritonitis. Am J Kidney Dis 2003, 41, 664–669.
- Chow KM, Szeto CC, Leung CB, Kwan BC, Law MC, Li PK: A risk analysis of continuous ambulatory peritoneal dialysis-related peritonitis. Perit Dial Int 2005, 25, 374–379.
- Lee HY, Kim YK, Kang SW, Lee HW, Choi KH, Han DS: Influence of nutritional status on CAPD peritonitis. Yonsei Med J 1990, 31, 65–70.
- Sirivongs D, Pongskul C, Keobounma T, Chunlertrith D, Sritaso K, Johns J: Risk factors of first peritonitis episode in Thai CAPD patients. J Med Assoc Thai 2006, 89, S138–S145.
- Venturoli D, Rippe B: Validation by computer simulation of two indirect methods for quantification of free water transport in peritoneal dialysis. Perit Dial Int 2005, 25, 77–84.
- Cueto-Manzano AM: Rapid solute transport in the peritoneum: physiologic and clinical consequences. Perit Dial Int 2009, 29, 90–95.