Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2013, vol. 22, nr 1, January-February, p. 57–67

Publication type: original article

Language: English

Phenotype-Genotype Analyses of Clinically Diagnosed Malaysian Familial Hypercholestrolemic Patients

Analiza zależności genotyp-fenotyp u Malezyjczyków chorych na rozpoznaną klinicznie rodzinną hipercholesterolemię

Alyaa Al-Khateeb1,B,C,D,E, Hassanain Al-Talib1,D,E,F, Mohd S. Mohamed2,A,E,F, Zurkurnai Yusof3,A, Bin A. Zilfalil4,A,B,C,D,E,F

1 Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia

2 Hospital Sultanah Nur Zahirah, Kuala Terengganu, Terengganu, Malaysia

3 Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia

4 Department of Pediatric, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia

Abstract

Background. Familial hypercholesterolemia and familial defective apo lipoprotein B are genetic disorders caused by defects in the low-density lipoprotein receptor gene and apo lipoprotein B 100 genes, respectively. The clinical phenotype of both diseases is characterized by increased plasma levels of total cholesterol and low density lipoprotein cholesterol, tendinous xanthomata, and premature coronary heart disease.
Objectives. The aim of this study is to perform an association study between different gene sequence variants in low-density lipoprotein and apo lipoprotein B 100 genes to the clinical finding and lipid profile parameters of the study subjects.
Material and Methods. A group of 164 familial hypercholesterolemic patients were recruited. The promoter region, exon 2–15 of the low density lipoprotein gene and parts of exon 26 and 29 of apo lipoprotein B 100 gene were screened by Denaturating Gradient High Performance Liquid Chromatography.
Results. For the apo lipoprotein B 100 gene, those with apo lipoprotein B 100 gene mutation have a significantly higher frequency of cardiovascular disease (P = 0.045), higher low density lipoprotein cholesterol and total cholesterol: high density lipoprotein cholesterol ratio than those without mutation (P = 0.03 and 0.02, respectively). For the low density lipoprotein gene defect those with frame shift mutation group showed the worst clinical presentation in terms of low density lipoprotein cholesterol level and cardiovascular frequency.
Conclusion. There was a statistically significant association between mutations of low density lipoprotein gene and apo lipoprotein B 100 genes and history of cardiovascular disease, younger age of presentation, family history of hyperlipidemia, tendon xanthoma and low density lipoprotein cholesterol level.

Streszczenie

Wprowadzenie.Rodzinna hipercholesterolemia i rodzinnie uszkodzona lipoproteina apo B są to genetyczne zaburzenia spowodowane przez uszkodzenie odpowiednio genu receptora lipoprotein małej gęstości i genów apo B 100. Kliniczny fenotyp obu chorób charakteryzuje się zwiększeniem stężenia cholesterolu całkowitego i cholesterolu lipoprotein małej gęstości, żółtakami ścięgna i przedwczesną chorobą wieńcowej.
Cel pracy. Ocena związków między różnymi wariantami sekwencji genów lipoprotein o małej gęstości i genów apo B 100 a rozpoznaniem klinicznym i parametrami profilu lipidowego badanych chorych.
Materiał i metody. Do badań włączono grupę 164 pacjentów chorych na hipercholesterolemię rodzinną. Region promotora, ekson 15/2 lipoprotein o małej gęstości i części eksonu 26 i 29 genu apo B 100 przeszukiwano metodą wysokosprawnej chromatografii cieczowej z czynnikiem denaturującym.
Wyniki. Dla genów apo lipoproteiny B 100, w pacjentów z mutacją genu apo lipoproteiny B 100 choroby sercowo-naczyniowe występują częściej (p = 0,045), stężenie cholesterolu lipoprotein małej gęstości jest większe i stosunek całkowitego cholesterolu do cholesterolu lipoprotein dużej gęstości niż u pacjentów bez mutacji (P = 0,03 i 0,02 odpowiednio). W przypadku wady genetycznej lipoprotein małej gęstości u pacjentów z mutacją zmiany fazy odczytu ich stan kliniczny był najgorszy pod względem stężenia cholesterolu lipoprotein o małej gęstości i częstotliwości występowania chorób krążenia.
Wnioski. Stwierdzono statystycznie istotny związek między mutacjami genu lipoprotein małej gęstości i genów lipoprotein apo B 100 oraz chorobami układu krążenia w wywiadzie, młodszym wiekiem wystąpienia chorób, rodzinną hiperlipidemią w wywiadzie, żółtakami ścięgna i stężeniem cholesterolu lipoprotein małej gęstości.

Key words

phenotypic characters, LDLR, APOB-100, familial hypercholesterolemia, premature coronary heart disease, polymorphism.

Słowa kluczowe

cechy fenotypowe, LDLR, APOB-100, rodzinna hipercholesterolemia, przedwczesna choroba niedokrwienna serca, polimorfizm.

References (42)

  1. Goldstein J, Hobbs H, Brown M: The metabolic and molecular bases of inherited disease. Eds.: C. Scriver AB, W. Sly, D. Valle, McGraw-Hill, 2001. New York, USA.
  2. Defesche JC, Pricker KL, Hayden MR, van der Ende BE, Kastelein JJ: Familial defective apolipoprotein B-100 is clinically indistinguishable from familial hypercholesterolemia. Arch Intern Med 1993, 20, 2349–2356.
  3. Varret M, Abifadel M, Rabes JP, Boileau C: Genetic heterogeneity of autosomal dominant hypercholesterolemia. Clin Genet 2008, 1, 1–13.
  4. Goldstein JL, Dana SE, Brunschede GY, Brown MS: Genetic heterogeneity in familial hypercholesterolemia: evidence for two different mutations affecting functions of low-density lipoprotein receptor. Proc Natl Acad Sci U S A 1975, 3, 1092–1096.
  5. Kanjuh V, Ostojic M, Lalic N, Stokic E, Adic-Cemerlic N, Gojkovic-Bukarica L: Low and high density lipoprotein cholesterol and coronary atherothrombosis. Med Przegl 2009, 3, 7–14.
  6. Rader DJ, Cohen J, Hobbs HH: Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 2003, 12, 1795–1803.
  7. Hansen PS: Familial defective apolipoprotein B-100. Dan Med Bull 1998, 4, 370–382.
  8. Myant NB: Familial defective apolipoprotein B-100: a review, including some comparisons with familial hypercholesterolaemia. Atherosclerosis 1993, 104, 1–18.
  9. Rees A: Familial hypercholesterolaemia: underdiagnosed and undertreated. Eur Heart J 2008, 21, 2583–2584.
  10. Jansen AC, van Aalst-Cohen ES, Tanck MW, Trip MD, Lansberg PJ, Liem AH et al.: The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: data in 2400 patients. J Intern Med 2004, 6, 482–490.
  11. Marks D, Thorogood M, Neil HA, Humphries SE: A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 2003, 1, 1–14.
  12. Group SSCobotSBR: Risk of fatal coronary heart disease in familial hypercholesterolaemia. BMJ 1991, 6807, 893– 896.
  13. (NCEP): Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) JAMA 2001, 19, 2486–2497.
  14. Al-Khateeb A, Zahri MK, Mohamed MS, Sasongko TH, Ibrahim S, Yusof Z et al.: Analysis of sequence variations in low-density lipoprotein receptor gene among Malaysian patients with familial hypercholesterolemia. BMC Med Genet 2011, 12, 40.
  15. Sijbrands EJ, Westendorp RG, Paola Lombardi M, Havekes LM, Frants RR, Kastelein JJ et al.: Additional risk factors influence excess mortality in heterozygous familial hypercholesterolaemia. Atherosclerosis 2000, 2, 421–425.
  16. Austin MA, Hutter CM, Zimmern RL, Humphries SE: Familial hypercholesterolemia and coronary heart disease: a HuGE association review. Am J Epidemiol 2004 Sep 1, 160(5), 421–429.
  17. Jelassi A, Najah M, Jguirim I, Maatouk F, Lestavel S, Laroussi OS et al.: A novel splice site mutation of the LDL receptor gene in a Tunisian hypercholesterolemic family. Clin Chim Acta 2008, 1–2, 25–29.
  18. Khoo KL, van Acker P, Defesche JC, Tan H, van de Kerkhof L, Heijnen-van Eijk SJ et al.: Low-density lipoprotein receptor gene mutations in a Southeast Asian population with familial hypercholesterolemia. Clin Genet 2000, 2, 98–105.
  19. Junyent M, Gilabert R, Jarauta E, Nunez I, Cofan M, Civeira F et al.: Impact of low-density lipoprotein receptor mutational class on carotid atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis 2010, 2, 437–441.
  20. Hegele RA: Genetic susceptibility to heart disease in Canada: lessons from patients with familial hypercholesterolemia. Genome 2006, 11, 1343–1350.
  21. Guardamagna O, Restagno G, Rolfo E, Pederiva C, Martini S, Abello F et al.: The type of LDLR gene mutation predicts cardiovascular risk in children with familial hypercholesterolemia. J Pediatr 2009, 2, 199–204.
  22. Bertolini S, Pisciotta L, Di Scala L, Langheim S, Bellocchio A, Masturzo P et al.: Genetic polymorphisms affecting the phenotypic expression of familial hypercholesterolemia. Atherosclerosis 2004, 1, 57–65.
  23. Chiou KR, Charng MJ: Detection of mutations and large rearrangements of the low-density lipoprotein receptor gene in Taiwanese patients with familial hypercholesterolemia. Am J Cardiol 2010, 12, 1752–1758.
  24. Hobbs HH, Brown MS, Goldstein JL: Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1992, 6, 445–466.
  25. Kakela JK, Friedman KD, Haberichter SL, Buchholz NP, Christopherson PA, Kroner PA et al.: Genetic mutations in von Willebrand disease identified by DHPLC and DNA sequence analysis. Mol Genet Metab 2006, 3, 262–271.
  26. Defesche JC, Schuurman EJ, Klaaijsen LN, Khoo KL, Wiegman A, Stalenhoef AF: Silent exonic mutations in the low-density lipoprotein receptor gene that cause familial hypercholesterolemia by affecting mRNA splicing. Clin Genet 2008, 6, 573–578.
  27. Bourbon M, Duarte MA, Alves AC, Medeiros AM, Marques L, Soutar AK: Genetic diagnosis of familial hypercholesterolaemia: the importance of functional analysis of potential splice-site mutations. J Med Genet 2009, 5, 352–357.
  28. Amsellem S, Briffaut D, Carrie A, Rabes JP, Girardet JP, Fredenrich A et al.: Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia. Hum Genet 2002, 6, 501–510.
  29. Assmann G, Cullen P, Schulte H: Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002, 3, 310– 315.
  30. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH: A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 1991, 6, 373–381.
  31. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr., Clark LT, Hunninghake DB et al.: Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004, 2, 227–239.
  32. Fouchier SW, Kastelein JJ, Defesche JC: Update of the molecular basis of familial hypercholesterolemia in The Netherlands. Hum Mutat 2005, 6, 550–556.
  33. Ejarque I, Real JT, Martinez-Hervas S, Chaves FJ, Blesa S, Garcia-Garcia AB et al.: Evaluation of clinical diagnosis criteria of familial ligand defective apoB 100 and lipoprotein phenotype comparison between LDL receptor gene mutations affecting ligand-binding domain and the R3500Q mutation of the apoB gene in patients from a South European population. Transl Res 2008, 3, 162–167.
  34. Punzalan FE, Sy RG, Santos RS, Cutiongco EM, Gosiengfiao S, Fadriguilan E et al.: Low density lipoprotein – receptor (LDL-R) gene mutations among Filipinos with familial hypercholesterolemia. J Atheroscler Thromb 2005, 5, 276–283.
  35. Chen J: Dietary changes and disease transition in China. Nutrition 1999, 4, 330–331.
  36. Jansen AC, van Wissen S, Defesche JC, Kastelein JJ: Phenotypic variability in familial hypercholesterolaemia: an update. Curr Opin Lipidol 2002, 2, 165–171.
  37. Abifadel M, Rabes JP, Jambart S, Halaby G, Gannage-Yared MH, Sarkis A et al.: The molecular basis of familial hypercholesterolemia in Lebanon: spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Hum Mutat 2009, 7, 682–691.
  38. Cohen JC, Boerwinkle E, Mosley TH Jr., Hobbs HH: Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006, 12, 1264–1272.
  39. Leigh SE, Foster AH, Whittall RA, Hubbart CS, Humphries SE: Update and analysis of the University College London low density lipoprotein receptor familial hypercholesterolemia database. Ann Hum Genet 2008, 4, 485–498.
  40. Austin MA, Hutter CM, Zimmern RL, Humphries SE: Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 2004, 5, 407–420.
  41. Allard D, Amsellem S, Abifadel M, Trillard M, Devillers M, Luc G et al.: Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Hum Mutat 2005, 5, 497.
  42. Humphries SE, Whittall RA, Hubbart CS, Maplebeck S, Cooper JA, Soutar AK et al.: Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet 2006, 12, 943–949.