Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 6, November-December, p. 831–841

Publication type: review article

Language: English

Novel Clinical Applications of Dual Energy Computed Tomography

Zastosowanie kliniczne dwuenergetycznej tomografii komputerowej

Tomasz Kraśnicki1,A,B,C,D, Przemysław Podgórski1,B,D,F, Maciej Guziński1,B,E, Anna Czarnecka1,B, Krzysztof Tupikowski1,B,E, Jerzy Garcarek1,E, Marek Sąsiadek1,A,E,F

1 Department of General Radiology and Inerventional Radiology and Neuroradiology, Wrocaw Medical University, Poland


Dual energy CT (DECT) was conceived at the very beginning of the computed tomography era. However the first DECT scanner was developed in 2006. Nowadays there are three different types of DECT available: dual-source CT with 80(100) kVp and 140 kVp tubes (Siemens Medical Solution); dual-layer multi-detector scanner with acquisition 120 or 140 kVp (Philips Healthcare); CT unit with one rapid kVp switching source and new detector based on gemstone scintillator materials (GE Healthcare). This article describes the physical background and principles of DECT imaging as well as applications of this innovative method in routine clinical practice (renal stone differentiation, pulmonary perfusion, neuroradiology and metallic implant imaging). The particular applications are illustrated by cases from author’s material.


Podstawy fizyczne dwuenergetycznej tomografii były znane od początku istnienia tomografii komputerowej, jednak pierwsze tomografy dwuenergetyczne powstały dopiero w 2006 r. Obecnie do zastosowań klinicznych są dostępne 3 różne rodzaje tomografów dwuenergetycznych: tomograf dwulampowy (Siemens Medical Solution), aparat wielorzędowy o dwóch warstwach detektorów (Philips Healthcare) oraz tomograf jednoźródłowy z możliwością szybkiego przełączania napięcia na lampie rentgenowskiej (GE Healthcare). W tym artykule zostaną przedstawione fizyczne podstawy i zasady działania dwuenergetycznej tomografii komputerowej oraz kliniczne zastosowanie tej innowacyjnej metody obrazowania (w urologii, kardiologii, neuroradiologii i ortopedii). Poszczególne aplikacje zostały zilustrowane własnymi przykładami.

Key words

Dual Energy Computed Tomography, DECT, Computed Tomography, renal stones, pulmonary perfusion, metal implant imaging, neuroradiology

Słowa kluczowe

dwuenergetyczna tomografia komputerowa, DECT, tomografia komputerowa, kamienie nerkowe, perfuzja płucna, obrazowanie implantu metalowego, neuroradiologia

References (17)

  1. Hendrich B, Zimmer K, Guzinski M, Sasiadek M: Application of 64-Detector Computed Tomography Myelography in the Diagnostics of the Spinal Canal. Adv Clin Exp Med 2011, 20, 3, 351–361.
  2. Duerk JL: Principles of Computed Tomography and Magnetic resonance imaging. In: CT and MR imaging of the whole body. Eds.: Haaga JR, Lanzieri CF. 2003, 22–36. Mosby, St. Lois.
  3. Alvarez RE, Macovski A: Energy-selective reconstruction in X-ray computerized tomography. Phys Med Biol 1976, 21, 733–744.
  4. Johnson TRC et al. (eds.): Dual Energy CT in Clinical Practice. Medical Radiology, Springer-Verlag Berlin Heidelberg 2011.
  5. Seibert JA: X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 1: Basic Principles of X-Ray Production. J Nucl Med Technol 2004, 32 (3), 139–147.
  6. Schram RPC: X-Ray Attenuation: Application of X-ray imaging for density analysis. NRG report 20002/01.44395/I, 2001.
  7. Haghighi RR, Chatterjee S, Vyas A, Kumar P, Thulkar S: X-ray attenuation coefficient of mixtures: Inputs for dual-energy CT. Med Phys 2011, 38 (10), 5270–5279.
  8. Barett JF, Keat N: Artifacts in CT: Recognition and Avoidance. RadioGraphics 2004, 24, 1679–1691.
  9. Karçaaltıncaba M, Aktaş A: Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol 2011, 17(3), 181–194.
  10. Zou Y, Silver MD: Analysis of Fast kV-switching in Dual Energy CT using a Prereconstruction Decomposition Technique. Medical Imaging 2008, Physics of Medical Imaging, Proc. of SPIE 2008, 6913, 691313.
  11. Ying Z, Naidu R, Crawford CR: Dual energy computed tomography for explosive detection. J X-Ray Sci Technol 2006, 14, 235–256.
  12. Jeong KY, Ra JB: Reduction of artifacts due to multiple metallic objects in computed tomography. Medical Imaging 2009: Physics of Medical Imaging Proc. of SPIE 2009, 7258, 72583E.
  13. Lee YH, Park KK, Song HT, Kim S, Suh JS: Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 2012, Feb 4 [Epub ahead of print].
  14. Ramakrishna K, Muradlidhar K, Munshi P: Beam hardening in simulated X-ray. NDT E Int 2006, 39, 449–457.
  15. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR: Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 2011, 21, 1424–1429.
  16. Shikhaliev PM, Fritz SG: Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application. Phys Med Biol 2011, 56, 1905.
  17. Yu Z, Thibault JB, Bouman CA, Sauer KD, Hsieh J: Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans Image Process 2011, 20(1), 161–175.