Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.7)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 4, July-August, p. 423–431

Publication type: original article

Language: English

Effect of Quercetin-5’-sulfonic Acid Sodium Salt on SOD Activity and ADMA/DDAH Pathway in Extracorporeal Liver Perfusion in Rats

Wpływ soli sodowej kwasu kwercetyno-5’-sulfonowego na aktywność dysmutazy ponadtlenkowej i układ ADMA/DDAH podczas pozaustrojowej perfuzji wątroby u szczurów

Małgorzata Trocha1,, Anna Merwid-Ląd1,, Andrzej Szuba2,, Tomasz Sozański1,, Jan Magdalan1,, Adam Szeląg1,, Maria Kopacz3,, Anna Kuźniar3,, Dorota Nowak3,

1 Department of Pharmacology, Wroclaw Medical University, Poland

2 Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Poland

3 Department of Inorganic and Analytical Chemistry, Chemical Faculty University of Technology, Rzeszów, Poland

Abstract

Background. Quercetin-5’-sulfonic acid sodium salt (NaQSA) exerts good aqueous solubility, strong antioxidant activity and low toxicity.
Objectives. The aims of this study were to investigate the effect of NaQSA on superoxide dismutase (SOD) activity and ADMA/DDAH pathway during extracorporeal liver perfusion (ELP).
Material and Methods. The study was carried out on male Wistar rats. Isolated livers were perfused with KrebsHenseleit bicarbonate buffer (KHB) + 1 μM ADMA (group C), or with KHB + 1 μM ADMA and either 10 μM NaQSA (Q10) or 50 μM NaQSA (Q50). In group 0 (sham) livers were perfused with KHB alone. Levels of ADMA, alanine (ALT) and aspartate (AST) aminotransferases activities were measured during perfusion. After 90 min. of perfusion superoxide dismutase (SOD) and dimethylarginine dimethylaminohydrolase (DDAH) activities were estimated in liver homogenates.
Results. DDAH activity in Q10 group was significantly higher as compared to control and Q50 groups. No significant differences were observed between Q50 and control group. The decrease in ADMA concentration during perfusion was observed in all groups, but the most pronounced in the group Q10 and the least in group Q50. During perfusion AST activities were the lowest in Q50 group. No significant difference in SOD activity in groups perfused with NaQSA as compared to control group was noted.
Conclusion. The impact of NaQSA on ADMA/DDAH system depends on its concentration. In lower concentration NaQSA exerted some beneficial properties which vanished in higher concentration. No increase in SOD activity during perfusion with NaQSA was observed.

Streszczenie

Wprowadzenie. Sól sodową kwasu kwercetyno-5’-sulfonowego (NaQSA) cechuje dobra rozpuszczalność w wodzie, silne działanie antyoksydacyjne i mała toksyczność.
Cel pracy. Ocena wpływu NaQSA na aktywność dysmutazy ponadtlenkowej (SOD) i układ ADMA/DDAH podczas pozaustrojowej perfuzji wątroby (ELP).
Materiał i metody. Badanie przeprowadzono na samcach szczurów szczepu Wistar. Izolowane wątroby perfundowano buforem Krebsa-Henseleita (KHB) + 1 μM ADMA (grupa C), lub KHB + 1 μM ADMA z dodatkiem 10 μM NaQSA (grupa Q10) lub 50 μM NaQSA (grupa Q50). W grupie 0 (sham) wątroby perfundowano jedynie KHB. Podczas perfuzji zostały oznaczone poziom ADMA oraz aktywność aminotransferaz alaninowej (ALT) i asparaginianowej (AST). Po 90 min perfuzji w homogenatach wątrób oznaczono aktywności dysmutazy ponadtlenkowej (SOD) i dimetyloaminohydrolazy dimetyloargininy (DDAH).
Wyniki. Aktywność DDAH w grupie Q10 była istotnie większa w porównaniu z grupą kontrolną i Q50. Nie stwierdzono istotnych różnic aktywności DDAH między grupami Q50 i kontrolną. Zmniejszenie stężenia ADMA w czasie perfuzji obserwowano we wszystkich grupach, największe w grupie Q10, a najmniejsze w grupie Q50. Stężenie AST podczas perfuzji było najmniejsze w grupie Q50. Nie stwierdzono istotnych różnic w aktywności SOD w grupach perfundowanych NaQSA w porównaniu z grupą kontrolną.
Wnioski. Wpływ NaQSA na układ ADMA/DDAH zależy od jej stężenia. W mniejszym stężeniu NaQSA wykazywał korzystne właściwości, które zniknęły w większym stężeniu. Nie obserwowano wzrostu aktywności SOD podczas perfuzji z NaQSA.

Key words

quercetin, extracorporeal perfusion, oxidative stress, ADMA, DDAH, rats

Słowa kluczowe

kwercetyna, perfuzja pozaustrojowa, stres oksydacyjny, ADMA, DDAH, szczury

References (35)

  1. Shah V: Cellular and molecular basis of portal hypertension. Clin Liver Dis 2001, 5, 629–644.
  2. Langer DA, Shah VA: A gas, an amino acid, and an imposter: the story of nitric oxide, L-arginine, and ADMA in portal hypertension. Hepatology 2005, 42, 1255–1257.
  3. Fan C, Zwacka RM, Engelhardt JF: Therapeutic approaches for ischemia/reperfusion injury in the liver. J Mol Med 1999, 77, 577–596.
  4. Simonsen U, Rodriguez-Rodriguez R, Dalsgaard T, Buus NH, Stankevicius E: Novel approaches to improving endothelium-dependent nitric oxide-mediated vasodilatation. Pharmacol Rep 2009, 61, 105–115.
  5. Schmitt CA, Dirsch VM: Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide 2009, 21, 77–91.
  6. Olszanecki R, Gębska A, Kozlovski VI, Gryglewski RJ: Flavonoids and nitric oxide synthase. J Physiol Pharmacol 2002, 53, 571–584.
  7. Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, González-Gallego J: Quercetin decreases oxidative stress, NF-B activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr 2005, 135, 2299–2304.
  8. Vallance P, Leone A, Calver A, Collier J, Moncada S: Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992, 339, 572–575.
  9. Cooke JP: Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 2000, 20, 2032–2037.
  10. Asagami T, Abbasi F, Stuelinger M, Lamendola C, McLaughlin T, Cooke JP, Reaven GM, Tsao PS: Metformin treatment lowers asymmetric dimethylarginine concentrations in patients with type 2 diabetes. Metabolism 2002, 51, 843–846.
  11. Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T: Increased endogenous nitric oxide synthase inhibitor in patients with congestive heart failure. Life Sci 1998, 62, 2425–2430.
  12. Boger RH, Bode-Boger SM, Sydow K, Heistad DD, Lentz SR: Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol 2000, 20, 1557–1564.
  13. Boger RH, Bode-Boger SM, Tsao PS, Lin PS, Chan JR, Cooke JP: An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J Am Coll Cardiol 2000, 36, 2287–2295.
  14. Boger RH, Sydow K, Borlak J, Thum T, Lenzen H, Schubert B, Tsikas D, Bode-Böger SM: LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethioninedependent methyltransferases. Circ Res 2000, 87, 99–105.
  15. Nijveldt RJ, Teerlink T, Siroen MP, van Lambalgen AA, Rauwerda JA, van Leeuwen PA: The liver is an important organ in the metabolism of asymmetrical dimethylarginine (ADMA). Clin Nutr 2003, 22, 17–22.
  16. Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP: Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 1999, 99, 3092–3095.
  17. Vallance P, Leiper J: Cardiovascular biology of the asymmetric dimethylarginine: dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol 2004, 24, 1023–1030.
  18. Duate J, Pérez-Vizcaino F, Zarzuelo A, Jiménez J, Tamargo J: Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur J Pharmacol 1993, 239, 1–7.
  19. Formica JV, Regelson W: Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 1995, 33, 1061–1080.
  20. Park C, So H, Shin C, Baek S, Moon B, Shin S, Lee HS, Lee DW, Park R: Quercetin protects the hydrogen peroxide-induced apoptosis via inhibition of mitochondrial dysfuntion in H9c2 cardiomyoblast cells. Biochem Pharmacol 2003, 66, 1287–1295.
  21. Huk I, Brovkovych V, Nanobash Vili J, Weigel G, Neumayer C, Partyka L, Patton S, Malinski T: Bioflavonoid quercetin scavenges superoxide and increases nitric oxide concentration in ischaemia-reperfusion injury an experimental study. Br J Surg 1998, 85, 1080–1085.
  22. Peres W, Tuñón MJ, Collado PS, Herrmann S, Marroni N, Gonzalez-Gallego J: The flavonoid quercetin ameliorates liver damage in rats with biliary obstruction. J Hepatol 2000, 33, 742–750.
  23. Pavanato MA, Marroni NP, Marroni CA, Llesuy SF: Quercetin prevents oxidative stress in cirrhotic rats. Dig Dis Sci 2007, 52, 2616–2621.
  24. Lien EJ, Ren S, Bui HH, Wang R: Quantitative structure-activity analysis of phenolic antioxidants. Free Radic Biol Med 1999, 26, 285–294.
  25. Kawada N, Seki S, Inoue M, Kuroki T: Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology 1998, 27, 1265–1274.
  26. Yamamoto Y, Oue E: Antihypertensive effect of quercetin in rats fed with a high-fat high-sucrose diet. Biosci Biotechnol Biochem 2006, 70, 933–939.
  27. Graefe EU, Derendorf H, Veit M: Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int J Clin Pharmacol Ther 1999, 37, 219–233.
  28. Merfort I, Heilmann J, Weiss M, Pietta P, Gardana C: Radical scavenger activity of three flavonoid metabolites studied by inhibition of chemiluminescence in human PMNs. Planta Med 1996, 62, 289–292.
  29. Makris DP, Rossiter J: Comparison of quercetin and a non-orthohydroxy flavonol as antioxidants by competing in vitro oxidation reactions. J Agric Food Chem 2001, 49, 3370–3377.
  30. Kopacz M: Quercetin and morinosulfonates as analytical reagents. J Anal Chem 2003, 58, 225–229.
  31. Juźwiak S, Wójcicki J, Mokrzycki K, Marchlewicz M, Białecka M, Wenda-Różewicka L, Gawrońska-Szklarz B, Droździk M: Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacol Rep 2005, 57, 604–609.
  32. Kopacz M: Sulfonic Derivatives of Morin. Pol J Chem 1981, 55, 227–229.
  33. Morales AI, Vicente-Sanchez C, Jerkic M, Santiago JM, Sanchez-Gonzales PD, Perez-Barriocanal F, LopezNovoa JM: Effect of quercetin on metallothionein, nitric oxide synthase and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicol Appl Pharmacol 2006, 210, 128–135.
  34. Boger RH, Bode-Boger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, Blaschke TF, Cooke JP: Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 1998, 98, 1842–1847.
  35. Parker RA, Huang Q, Tesfamariam B: Influence of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors on endothelial nitric oxide synthase and the formation of oxidants in the vasculature. Atherosclerosis 2003, 169, 19–29.