Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.4)
Index Copernicus  – 161.11; MEiN – 140 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 4, July-August, p. 417–421

Publication type: editorial article

Language: English

The Basic Neurophysiologic Concept of Lower Urinary Tract Function – the Role of Vanilloid TRPV1 Receptors of Urinary Bladder Afferent Nerve Endings

Neurofizjologiczne aspekty funkcjonowania dolnych dróg moczowych – udział receptorów waniloidowych TRPV1 aferentnych zakończeń nerwowych pęcherza moczowego

Kajetan Juszczak1,2,, Piotr J. Thor1,

1 Department of Pathophysiology, Jagiellonian University, Medical College, Kraków, Poland

2 Department of Urology, Rydygier Memorial Hospital, Kraków, Poland

Abstract

The pathophysiology of functional disorders of the urinary bladder is still relatively poorly understood, although the mechanisms controlling the lower urinary tract function have been quite accurately described. The rich innervation of afferent and efferent urinary tract, multi-level neural control of micturition process, the diversity of the autonomic nervous system neurotransmitters, as well as “neuronal activity” of the urotelium determines the correct filling and emptying of the bladder. Functional diseases (OAB – such as overactive bladder) include sensory and/or motor dysfunction of the urinary bladder, leading to sleep disturbances, psychosomatic disorders, lower quality of life, etc. It is known that sensory afferent C fibers and vanilloid TRPV1 receptors are important in the pathogenesis of OAB. Modulation of the activity of these fibers and/or TRPV1 receptors by a number of substances (such as capsaicin, lidocaine, etc.) reduces the symptoms of OAB. Detailed knowledge of the neurophysiology of the lower urinary tract is a prerequisite for proper treatment of functional disorders of the urinary tract. The paper discusses the neurophysiologic basis, the importance of afferent C fibers and vanilloid TRPV1 receptors in lower urinary tract.

Streszczenie

Patofizjologia schorzeń czynnościowych pęcherza moczowego nadal jest stosunkowo mało poznana, mimo że mechanizmy kontrolujące czynność dolnych dróg moczowych zostały dość dokładnie opisane. Bogate unerwienie aferentne i eferentne dolnych dróg moczowych, wielopoziomowość kontroli neuronalnej procesu mikcji, różnorodność neuroprzekaźników autonomicznego układu nerwowego, a także „czynność neuronalna” urotelium determinuje prawidłowe wypełnianie i opróżnianie pęcherza moczowego. Choroby czynnościowe (np. nadaktywny pęcherz moczowy: OAB – overactive bladder) obejmują dysfunkcję czuciową i/lub motoryczną pęcherza moczowego, prowadząc do zaburzenia snu, zaburzeń psychosomatycznych, zmniejszenia jakości życia itd. Wiadomo, że aferentne włókna czuciowe grupy C oraz receptory waniloidowe TRPV1 są istotne w patogenezie OAB. Modulacja aktywności tych włókien i/lub receptorów TRPV1 przez wiele substancji (m.in. kapsaicynę, lidokainę itd.) zmniejsza objawy OAB. Szczegółowa znajomość neurofizjologii dolnych dróg moczowych jest warunkiem koniecznym prawidłowego leczenia schorzeń czynnościowych dolnych dróg moczowych. W pracy omówiono podstawy neurofizjologiczne, znaczenie włókien grupy C i receptorów waniloidowych w funkcjonowaniu dolnych dróg moczowych.

Key words

neurophysiology, urinary bladder, afferent C-fibers, vanilloid receptor

Słowa kluczowe

neurofizjologia, pęcherz moczowy, aferentne włókna C, receptor waniloidowy

References (38)

  1. Morrison J, Steers WD, Brading A: Basic urological science. Incontinence. Red. Abrams P, Khoury S, Wein A. Health Publication Ltd., Plymbridge Distributors Ltd. Plymonth. 2002, 2, 83–163.
  2. de Groat WC, Yoshimura N: Pharmacology of the lower urinary tract. Ann Rev Pharmacol Toxicol 2001, 41, 691–721.
  3. Abrams P, Artibani W: Lower urinary tract innervation and the normal micturition cycle. In: Understanding Stress Urinary Incontinence. Eds.: Abrams P, Artibani W. Ismar Healthcare, Belgium. 2004, 12–14.
  4. Thor PJ: Podstawy patofizjologii człowieka. Wybrane choroby nerek i dróg moczowych. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 2001, 283–319.
  5. Andersson KE: Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev 1993, 45(3), 253–308.
  6. Burnstock G, Cocks T, Kasakov L, Wong HK: Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purynergic”) nerves in guinea-pig taenia coli and bladder. Eur J Pharmacol 1978, 49(2), 145–149.
  7. Chapple C, Chess-Williams R: Latest developments in the field of neurotransmitters. Eur Urol 1998, 34, Suppl 1, 45–47.
  8. Radziszewski P, Ekblad E, Sundler F, Mattiasson A: Distribution of neuropeptide-tyrosine hydroxylaseand nitric oxide synthase containing nerve fibres in the external urethral sphincter of the rats. Scand J Urol Nephrol 1996, 179 Suppl, 81–85.
  9. Holzer P: Capsaicin as a tool for studying neuron functions. In: Sensory nerves and neuropeptides in gastroenterology: from basis science to clinical perspectives. Eds.: Costa M., Plenum Press, New York 1991, 3–16.
  10. Chancellor MB: New frontiers in the treatment of overactive bladder and incontinence. Rev Urol 2002, 4 (4), S50–S56.
  11. Habler HJ, Janig W, Koltzenburg M: Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cats. J Physiol 1990, 425, 545–562.
  12. Fall M, Lindstrom S, Mazieres L: A bladder-to-bladder cooling reflex in the cats. J Physiol 1990, 427, 281–300.
  13. Juszczak K, Ziomber A, Wyczółkowski M, Thor PJ: Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic overactive bladder model rats. J Physiol Pharmacol 2009, 60, 4, 85–91.
  14. Juszczak K, Wyczółkowski M, Thor PJ: The participation of afferent C fibres in micturition reflex regulation. Adv Clin Exp Med 2010, 19, 1, 13–19.
  15. Juszczak K, Wyczółkowski M, Thor PJ: Pathophysiology of overactive bladder. Przeg Lek 2010, 67(7), 488–490.
  16. Juszczak K, Ziomber A, Wyczółkowski M, Thor PJ: Effect of partial and complete blockade of Transient Receptor Potential ion channel of the Vanilloid (TRPV) on urinary bladder motor activity in an experimental hyperosmolar overactive bladder rat model. J Physiol Pharmacol 2011, 62(3), 321–326.
  17. Gosling JA, Dixon JS: Sensory nerves in the mammalian urinary tracts. An evaluation using light and electron microscopy. J Anat 1974, 117, 133–144.
  18. Wakabayashi Y, Tomoyoshi T, Fujimiya M, Arai R, Maeda T: Substance P containing axon terminals in the mucosa of the human urinary bladder: pre-embedding immunohistochemistry using cryostat sections for electron microscopy. Histochemistry 1993, 100, 401–407.
  19. Maggi CA: Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol 1995, 45, 1–98.
  20. Gabella G, Davis C: Distribution of afferent axons in bladder of rats. J Neurocytol 1998, 27, 141–155.
  21. Birder L: Role of the urothelium in bladder function. Scand J Urol Nephrol 2004, Suppl. 215, 48–53.
  22. Brading FA: Spontaneous activity of the lower urinary tract muscles: correlation between ion channels and tissue function. J Physiol 2006, 570(Pt 1), 13–22.
  23. McCloskey KD: Characterisation of outward currents in interstitial cells from the guinea pig bladder. J Urol 2005, 173(1), 296–301.
  24. Fowler CJ: Bladder afferents and their role in the overactive bladder. Urology 2002, 59(5), Suppl. 1, 37–42.
  25. Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford AP, Burnstock G: P2X3 knoct-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 2001, 21(15), 5670–5677.
  26. Burcher E, Zeng XP, Strigas J, Shang F, Millard RJ, Moore KH: Autoradiographic localization of tachykinin and calcitonin gene-related peptide receptors in adult urinary bladder. J Urol 2000, 163, 331–337.
  27. Maggi CA: Prostanoids as local modulators of reflex micturition. Pharmacol Res 1992, 25, 13–20.
  28. Du S, Araki I, Yoshiyama M, Nomura T, Takeda M: Transient Receptor Potential Channel A1 Involved in Sensory Transduction of Rat Urinary Bladder Through C-Fiber Pathway. Urology 2007, 70, 826–831.
  29. Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Högestätt ED, Zygmunt PM: Distribution and Function of the Hydrogen Sulfide-Sensitive TRPA1 Ion Channel in Rat Urinary Bladder. Eur Urol 2008, 53(2), 391–400.
  30. Yokoyama O, Nagano K, Kjawaguchi K: The response of the detrusor muscle to acetylocholine in patients with intravesical obstruction. Urol Res 1991, 19, 117–121.
  31. Harrison SC, Hunnam GR, Farman P: Bladder instability and denervation in patients with bladder outlet obstruction. Br J Urol 1987, 60, 519–522.
  32. Nagy I, Santha P, Jancso G, Urban L: The role of the Vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 2004, 500, 351–369.
  33. Chuang YC, Fraser MO, Yu Y, Chancellor MB, De Groat WC, Yoshimura N: The role of bladder afferent pathways in bladder hyperactivity induced by the intravesical administration of nerve growth factor. J Urol 2001, 165, 975–979.
  34. Vizzard MA: Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp Neurol 2000, 161, 273–284.
  35. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288, 306–313.
  36. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown S: Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405, 183–187.
  37. de Ridder D, Baert L: Vanilloids and the overactive bladder. BJU Int 2000, 86, 172–180.
  38. Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, Watkins S, Caterina MJ: Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 2002, 5, 856–860.