Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 2, March-April, p. 263–272

Publication type: review article

Language: English

Neuroprostheses for Increasing Disabled Patients’ Mobility and Control

Neuroprotezy wykorzystywane do zwiększenia możliwości osób niepełnosprawnych z zakresu mobilności i sterowania

Emilia Mikołajewska1,, Dariusz Mikołajewski2,

1 Rehabilitation Clinic, Military Clinical Hospital No. 10 and Polyclinic, Bydgoszcz, Poland

2 Division of Applied Informatics, Department of Physics, Astronomy and Applied Informatics, Nicolaus Copernicus University in Toruń, Poland

Abstract

Neuroprostheses are electronic devices using electrophysiological signals to stimulate muscles, electronic/ mechanical devices such as substitutes for limbs or parts of limbs, or computers. The development of neuroprostheses was possible thanks to advances in understanding of the physiology of the human brain and in the capabilities of hardware and software. Recent progress in the area of neuroprosthetics may offer important breakthroughs in therapy and rehabilitation. New dedicated solutions for disabled people can lead to their increased participation in social, educational and professional areas. It is worth focussing particular attention on new solutions for people with paralysis, people with communication disorders and amputees. This article aims at investigating the extent to which the available opportunities are being exploited, including current and potential future applications of braincomputer interfaces.

Streszczenie

Neuroproteza jest urządzeniem elektronicznym wykorzystującym sygnały elektrofizjologiczne do stymulacji efektorów, takich jak mięśnie lub urządzenia elektroniczne i/lub mechaniczne, zastępujące kończyny lub ich części oraz sterowania komputerami i ich oprogramowaniem. Rozwój neuroprotez był możliwy dzięki postępowi w zrozumieniu neurofizjologii mózgu człowieka oraz zwiększeniu możliwości sprzętu komputerowego i oprogramowania. Postęp w omawianej dziedzinie może ustanowić nowe kamienie milowe w leczeniu i rehabilitacji. Nowe rozwiązania dedykowane osobom niepełnosprawnym mogą spowodować wzrost ich uczestnictwa w różnych obszarach życia: od społecznego przez edukację aż po obszar zawodowy. Szczególną uwagę warto zwrócić na stworzenie nowych rozwiązań dla pacjentów z porażeniem, brakiem możliwości komunikacji werbalnej oraz osób po amputacjach. Artykuł jest próbą oceny, w jakim stopniu wykorzystuje się możliwości z omawianego zakresu, w tym obecne i potencjalne przyszłe zastosowania interfejsów mózg–komputer.

Key words

rehabilitation, neuroprosthesis, brain-computer inteface, disabled people

Słowa kluczowe

rehabilitacja, neuroproteza, interfejs mózg–komputer, osoby niepełnosprawne

References (48)

  1. Wolpaw JR, Birbaumer N, McFarland DJ: Brain–computer interfaces for communication and control. Clin Neurophysiol 2002, 113(6), 767–791.
  2. Kübler A, Neumann N: Brain–computer interfaces – the key for the conscious brain locked into a paralyzed body. Prog Brain Res 2005, 150, 513–525.
  3. Dudek Z: Interfejs BCI – próba przełamania bariery pomiędzy człowiekiem a komputerem (article in Polish). Przegląd Telekomunikacyjny + Wiadomości Telekomunikacyjne 2003, 7, 377–382.
  4. Mikołajewska E, Mikołajewski D: Neurorehabilitacja XXI wieku. Techniki teleinformatyczne (book in Polish). Impuls, Kraków 2011.
  5. Mikołajewska E, Mikołajewski D: Interfejsy mózg–komputer – zastosowania cywilne i wojskowe (article in Polish). Bellona 2011, 2, 123–133.
  6. Stieglitz T, Rubehn B, Henle C et al.: Brain–computer interfaces: an overview of the hardware to record neural signals from the cortex. Prog Brain Res 2009, 175, 297–315.
  7. Kipiński L, Maciejowski A: Analysis of brain evoked potentials based on digital registered single-trial responses. Adv Clin Exp Med 2010, 19, 3, 289–299.
  8. MEDLINE/PubMed (U.S. National Library of Medicine) http://www.ncbi.nlm.noh.gov/pubmed-access 05.05.2011.
  9. Wolpaw JR: Brain–computer interfaces as new brain output pathways. J Physiol 2007, 579(3), 613–619.
  10. Mikołajewska E, Mikołajewski D: Roboty rehabilitacyjne (article in Polish). Rehab Prakt 2010, 4, 49–53.
  11. Kim HK, Park S, Srinivasan MA: Developments in brain–machine interfaces from the perspective of robotics. Hum Mov Sci 2009, 28(2), 191–203.
  12. Moritz CT, Perlmutter SI, Fetz EE: Direct control of paralysed muscles by cortical neurons. Nature 2008, 456(7222), 639–642.
  13. Birbaumer N, Cohen LG: Brain–computer interfaces: communication and restoration of movement in paralysis. J Physiol 2007, 579(3), 621–636.
  14. Birbaumer N: Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 2006, 43(6), 517–532.
  15. Mellinger J, Schalk G, Braun C et al.: An MEG-based brain–computer interface (BCI). Neuroimage 2007, 36(3), 581–593.
  16. McFarland DJ, Sarnacki WA, Vaughan TM et al.: Brain–computer interface (BCI) operation: signal and noise during early training sessions. Clin Neurophysiol 2005, 116(1), 56–62.
  17. McFarland DJ, Wolpaw JR: EEG-based communication and control: speed-accuracy relationships. Appl Psychophysiol Biofeedback 2003, 28(3), 217–231.
  18. McFarland DJ, Sarnacki WA, Wolpaw JR: Brain–computer interface (BCI) operation: optimizing information transfer rates. Biol Psychol 2003, 63(3), 237–251.
  19. Mussa-Ivaldi FA, Miller LE: Brain–machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends Neurosci 2003, 26(6), 329–335.
  20. Tecchio F, Porcaro C, Barbati G et al.: Functional source separation and hand cortical representation for a brain– computer interface feature extraction. J Physiol 2007, 580(3), 703–721.
  21. Durka PJ: Matching Pursuit and Unification in EEG Analysis. Artech House 2007.
  22. Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR: Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 2011, 8(2), 025027.
  23. Fuhr T, Quintern J, Riener R, Schmidt G: Walking with WALK! A cooperative, patient-driven neuroprosthetic system. IEEE Eng Med Biol Mag 2008, 27(1), 38–48.
  24. Alon G, Levitt AF, McCarthy PA: Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil Neur Repair 2007, 21(3), 207–215.
  25. Ruffini G, Dunne S, Farrés E et al: ENOBIO – First Tests of a Dry Electrophysiology Electrode using Carbon Nanotubes. Proceedings of 28th Annual International Conference of the IEEE. Aug. 2006, p. 1826–1829.
  26. Müller GR, Neuper C, Pfurtscheller G: Implementation of a telemonitoring system for the control of an EEGbased brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 2003, 11(1), 54–59.
  27. Warwick K: I, cyborg. University of Illinois Press 2004.
  28. ANSI/AAMI/ISO 14708–3:2008 Implants for Surgery – Active implantable medical devices Part 3: Implantable neurostimulators.
  29. Voge ChM, Stegemann JP: Carbon nanotubes in neural interfacing applications. J Neural Eng 2011, 8(2), 011001.
  30. Mikołajewska E, Mikołajewski D: Wheelchairs development from perspective of physical therapists and biomedical engineers. Adv Clin Exp Med 2010, 19, 6, 771–776.
  31. Mikołajewska E, Mikołajewski D: Exoskeletons in Neurological Diseases – Current and Potential Future Applications. Adv Clin Exp Med 2011, 20, 2, 227–233.
  32. Mikołajewska E, Mikołajewski D: E-learning in the education of people with disabilities. Adv Clin Exp Med 2011, 20, 1, 103–109.
  33. Neuper C, Müller GR, Kübler A et al.: Clinical application of an EEG-based brain–computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol 2003, 114(3), 399–409.
  34. Daly JJ, Wolpaw JR: Brain–computer interfaces in neurological rehabilitation. Lancet Neurol 2008, 7(11), 1032– 1043.
  35. Tavella M, Leeb R, Rupp R et al.: Towards natural non-invasive hand neuroprostheses for daily living. Conf Proc IEEE Eng Med Biol Soc 2010, 1, 126–129.
  36. Hill-Hermann V, Strasser A, Albers B et al.: Task-specific, patient-driven neuroprosthesis training in chronic stroke: results of a 3-week clinical study. Am J Occup Ther 2008, 62(4), 466–472.
  37. Laufer Y, Ring H, Sprecher E et al.: Gait in individuals with chronic hemiparesis: one-year follow-up of the effects of a neuroprosthesis that ameliorates foot drop. J Neurol Phys Ther 2009, 33(2), 104–110.
  38. Rossini L, Rossini PM: Combining ENG and EEG integrated analysis for better sensitivity and specificity of neuroprosthesis operations. Conf Proc IEEE Eng Med Biol Soc 2010, 1, 134–137.
  39. Błachowicz A, Paszkiel S: Mobilny system do pomiaru wyładowań niezupełnych sterowany falami elektroencefalograficznymi (article in Polish). Pomiary Automatyka Robotyka 2010, 2, 12–16.
  40. Wheeler CA, Peckham PH: Wireless wearable controller for upper-limb neuroprosthesis. J Rehabil Res Dev 2009, 46(2), 243–256.
  41. Brown-Triolo DL, Roach MJ, Nelson K et al.: Consumer perspectives on mobility: implications for neuroprosthesis design. J Rehabil Res Dev 2002, 39(6), 659–669.
  42. Szczepanek D: Neurochirurgia – postępy 2006 (article in Polish). Med Prakt Chir 2007, 2, 22–25.
  43. Leuthardt EC, Schalk G, Moran D et al.: The emerging world of motor neuroprosthetics: a neurosurgical perspective. Neurosurgery 2006, 59(1), 1–14.
  44. Allison BZ, Wolpaw EW, Wolpaw JR: Brain–computer interface systems: progress and prospects. Expert Rev Med Devices 2007, 4(4), 463–474.
  45. Kübler A, Kotchoubey B: Brain–computer interfaces in the continuum of consciousness. Curr Opin Neurol 2007, 20(6), 643–649.
  46. Dornhege G, del R. Millán J, Hinterberger T et al. (eds.): Toward Brain–Computer Interfacing. MIT Press 2007.
  47. Krusienski DJ, Grosse-Wentrup M, Galán F, Coyle D, Miller KJ, Forney E et al.: Critical issues in state-of-theart brain–computer interface signal processing. J Neural Eng 2011, 8(2), 025002.
  48. Zanter TO, Kothe Ch: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J Neural Eng 2011, 8(2), 025005.