Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 2, March-April, p. 249–254

Publication type: review article

Language: English

Endothelial Progenitor Cells in Diabetic Foot Syndrome

Śródbłonkowe komórki progenitorowe w zespole stopy cukrzycowej

Ewelina Drela1,, Katarzyna Stankowska1,, Arleta Kulwas1,, Danuta Rość1,

1 Department of Pathophysiology, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Poland

Abstract

In the late 20th century endothelial progenitor cells (EPCs) were discovered and identified as cells capable of differentiating into endothelial cells. Antigens characteristic of endothelial cells and hematopoietic cells are located on their surface. EPCs can proliferate, adhere, migrate and have the specific ability to form vascular structure, and they have a wide range of roles: They participate in maintaining hemostasis, and play an important part in the processes of vasculogenesis and angiogenesis. They are sources of angiogenic factors, especially vascular endothelial growth factor (VEGF). EPCs exist in bone marrow, from which they are recruited into circulation in response to specific stimuli. Tissue ischemia is thought to be the strongest inductor of EPC mobilization. Local ischemia accompanies many pathological states, including diabetic foot syndrome (DFS). Impaired angiogenesis – in which EPCs participate – is typical of DFS. An analysis of the available literature indicates that in diabetic patients the number of EPCs declines and their functioning is impaired. Endothelial progenitor cells are crucial to vasculogenesis and angiogenesis during ischemic neovascularization. The pathomechanisms underlying impaired angiogenesis in patients with DFS is complicated, but the discovery of EPCs has shed new light on the pathogenesis of many diseases, including diabetes foot syndrome.

Streszczenie

Śródbłonkowe komórki progenitorowe (EPCs – endothelial progenitor cells) zostały odkryte jako komórki wykazujące zdolność do różnicowania w komórki śródbłonka. Na swej powierzchni mają antygeny charakterystyczne zarówno dla komórek śródbłonka, jak i komórek hematopoetycznych. EPCs wykazują cechy proliferacji, adhezji, migracji oraz posiadają swoistą zdolność tworzenia struktur naczyniowych. Wachlarz ról pełnionych przez EPCs jest szeroki: biorą udział w utrzymaniu hemostazy, odgrywają istotną rolę w procesach waskulogenezy i angiogenezy. Są źródłem czynników angiogennych, zwłaszcza naczyniowo śródbłonkowego czynnika wzrostu (VEGF – vascular endothelial growth factor). EPCs egzystują w szpiku kostnym, skąd są rekrutowane do krążenia pod wpływem określonych bodźców. Za najsilniejszy czynnik mobilizujący EPCs do krwi krążącej jest uważane niedotlenienie tkanek. Miejscowa hipoksja towarzyszy wielu patologicznym stanom, w tym zespołowi stopy cukrzycowej (DFS – diabetic foot syndrome). DFS charakteryzuje się nieprawidłową angiogenezą, w której biorą udział EPCs. Z analizy dostępnej literatury wynika, iż liczba EPCs u pacjentów z cukrzycą jest zmniejszona oraz obserwuje się upośledzenie ich funkcji. Śródbłonkowe komórki progenitorowe są kluczowym elementem w budowaniu naczyń krwionośnych podczas neowaskularyzacji indukowanej niedotlenieniem. Patomechanizm leżący u podłoża nieprawidłowej angiogenezy u pacjentów z DFS jest skomplikowany, a odkrycie EPCs rzuciło nowe światło na patogenezę wielu schorzeń, w tym zespołu stopy cukrzycowej.

Key words

endothelial progenitor cells, diabetic foot syndrome

Słowa kluczowe

śródbłonkowe komórki progenitorowe, zespół stopy cukrzycowej

References (26)

  1. Pearson JD: Endothelial progenitor cells - hype or hope? J Thromb Haemost 2009, 7, 255–262.
  2. Urbich C, Dimmeler S: Endothelial progenitor cells: characterization and roles in vascular biology. Circ Res 2004, 95, 343–353.
  3. Fadini GP, Sartore S, Agostini C, Avogaro A: Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care 2007, 5, 1305–1312.
  4. Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N: CD34-/CD133 +VEGFR2 + Endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res 2006, 98, e20-e25.
  5. Silvestre JS: Vascular progenitor cells and diabetes: roles in postischemnic neovascularization. Diab Metabol 2008 34, 533–536.
  6. Ding H, Triggle Ch: R. Endothelial cell dysfunction and the vascular complications associated with type 2 diabetes: assessing the health of the endothelium. Vasc Health Risk Manag 2005, 1, 55–71.
  7. Ranjan AK, Kumar U, Hardikar AA, Poddar P, Nair PD, Hardikar AA: Human blood vessel-derived endothelial progenitors for endothelialization of small diameter vascular prosthesis. PLoS One 2009, 4 (11), e7718.
  8. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Equchi H, Onitsuka I, Matsui K, Imaizumi T: Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000, 105, 1527–1536.
  9. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishiola A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP: Evidence for circulating bone marrow-derived endothelial cells. Blood 1998, 92, 362–367.
  10. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat M, Clerque M, Manneville C, SaillaBarreau C, Duriez M, Tedqui A, Levy B, Penicaud L, Casteilla L: Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004, 109, 656–663.
  11. Majka SM, Jackson KA, Kienstra KA, Majesky MW, Goodell MA, Goodell MA, Hirschi KK: Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest 2003, 111, 71–79.
  12. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura I, Nadal-Ginard B, Anversa P: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003, 114, 763–776.
  13. Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, Nickenig G: Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 2003, 93, e17–24.
  14. Churdchomjan W, Kheloamai P, Manochantr S, Tapanadechopone ChP, Tantrawatpan CH, U-pratya Y, Issaragrisil S: Comparison of endothelial progenitor cell function in type 2 diabetes with good and poor glycemic control. BMC Endocr Dis 2010, 10, 5.
  15. Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC: Diabetic impairments in NO-mediated endothelail progenitor cell mobilization and homing are reversed in order to hyperoxia and SDF-1 α. J Clin Invest 2007, 117, 1249–1259.
  16. Liu ZJ, Velazquez OC: Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid Redox Signal 2008, 10, 1869–1882.
  17. Loomans C, van Haperen R, Duijs JM, Verseyden C, de Crom R, Leenen P, Drexhage HA, de Boer HC, de Koning EJP, Rabelink TJ, Staal FJT, van Zonneveld AJ: Differentiation of bone marrow-derived endothelial progenitor cells is shifted into proinflammatory phenotype in order to hyperglycemia. Mol Med 2009, 15, 152–159.
  18. Tepper OM, Galiano RD, Capla JM, Kalka Ch, Gagne PJ, Jacobovitz GR, Levine JP, Gurther GC: Human endothelial progenitor cells from type 2 diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002, 106, 2781–2786.
  19. Yan J, Tie G, Park B, Yang Y, Nowicki PT, Messina LM: Recovery from hindlimb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of eNOS and endothelial progenitor cells. J Vasc Surg 2009, 50, 1412–1422.
  20. Karnafel W: Diabetic foot-pathogenesis and treatment. Lekarz 2009, 11, 26–32.
  21. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A: Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Card 2005, 9, 1449–1457.
  22. Krankel N, Adams V, Linke A, Gielen S, Erbs S, Lenk K, Schuler G, Hambrecht R: Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler Thromb Vasc Biol 2005, 25, 698–703.
  23. Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB: Ischemic vascular damage can be repaired by healthy, but not diabetic endothelial progenitor cells. Diabetes 2007, 56, 960–967.
  24. Spinetti G, Kraenkel N, Emanueli C, Madeddu P: Diabetes and vessel wall remodeliling: from mechanistic insights to regenerative therapies. Cardiovasc Res 2008, 78.
  25. Fadini GP, Sartore S, Baesso I, Lenzi M, Agostini C, Tiengo A, Avogaro A: Endothelial progenitor cells and the diabetic paradox. Diabetes Care 2006, 3, 714–716.
  26. Humpert PM, Battista MJ, Lammert A, Reismann P, Djuric Z, Rudofsky G Jr, Zorn M, Morcos M, Hammes HP, Nawroth PP, Bierhaus A: Association of stromal cell-derived factor 1 genotype with diabetic foot syndrome and macrovascular disease in patients with type 2 diabetes. Clin Chem 2006, 52 (6), 1206–8.