Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2012, vol. 21, nr 2, March-April, p. 245–248

Publication type: review article

Language: English

Is the Zinc Neuroprotective Effect Caused by Prevention of Intracellular Zinc Accumulation?

Czy neuroprotekcyjne działanie cynku polega na zapobieganiu wewnątrzkomórkowej kumulacji cynku?

Małgorzata Sobieszczańska1,, Sławomir Tubek2,, Renata Szyguła3,, Andrzej Bunio3,

1 Department of Pathophysiology, Wroclaw Medical University, Wrocław, Poland

2 Department of Internal Diseases, Opole Voivodeship Hospital, Opole, Poland

3 Department of Physical Education and Physiotherapy, Technical University of Opole, Poland

Abstract

Zinc plays an important role in the functioning of all cells, including neurons. The precise mechanisms responsible for its neurotoxic and neuroprotective effects remain unclear despite extensive investigations. Similar Zn+2 effects can also be observed in cells outside the nervous system, and their lower sensitivity to hypoxia prolongs the cytotoxic effect of excess zinc. The evident dualism of zinc’s effects depends primarily on the energetic state of the particular cell and the efficacy of ion pumps; on genetically conditioned mechanisms regulating Zn efflux from cells and Zn sequestration inside the cell; and on the concentration of extracellular free Zn.

Streszczenie

Cynk odgrywa ważną rolę w funkcjonowaniu wszystkich komórek, w tym neuronów. Zarówno neurotoksyczne, jak i neutoprotekcyjne działanie cynku było przedmiotem licznych badań, niemniej jednak mechanizm jego podwójnego oddziaływania nadal pozostaje niewyjaśniony. Podobne rezultaty działania jonów cynku można także obserwować w komórkach poza układem nerwowym, a ich mniejsza wrażliwość na niedotlenienie przedłuża w czasie cytotoksyczne działanie nadmiaru cynku. Ten oczywisty dualizm działania cynku zależy głównie od stanu energetycznego komórki i wydajności pomp jonowych, jak również od uwarunkowanych genetycznie mechanizmów regulujących wypływ cynku z komórki i jego nagromadzenie wewnątrz komórki, a także od stężenia wolnego cynku w przestrzeni pozakomórkowej.

Key words

zinc, neuroprotection, neurotoxicity

Słowa kluczowe

cynk, neuroprotekcja, neurotoksyczność

References (26)

  1. Wastney ME, Ahmed S, Henkin RI: Changes in regulation of human zinc metabolism with age. Am J Physiol 1992, 263, 1162-1168.
  2. Simons TJB: Intracellular free zinc and zinc buffering in human red blood cells. J Membrane Biol 1991, 123, 63-71.
  3. Simson TJB: Calcium-dependent zinc efflux in human red blood cells. J Membrane Biol 1991, 123, 73-80.
  4. Vallee BL, Falchuk KH: The biochemical basis of zinc physiology. Physiol Rev 1993, 73, 79-87.
  5. Lowe NM, Green A, Rhodes JM, Lombard M, Jalan R, Jackson MJ: Studies of human zinc kinetics using the stable isotope 70Zn. Clin Sci 1993, 84, 113-119.
  6. Nagańska E, Matyja E: The protective effect of ZnCl2 pretreatment on the development of postanoxic neuron al damage in organotypic rat hippocampal cultures. Ultrastruct Pathol 2002, 26(6), 383-391. doi: 10.1080/01913120290104692.
  7. Shinji A, Ohnnishi H, Tsuchiya K, Ishizawa K, Torii M, Kanemasu Y, Kawazoe K, Minakuchi K, Yoshizumi M, Tamaki T: Calcium and reactive oxygen species mediated Zn2+-induced apoptosis in PC12 cells. J Pharmacol Sci 2006, 102, 103–111.
  8. Nriagu J: Zinc Toxicity in Humans. 2007, Elsevier BV, pp. 1-7.
  9. Lavoie N, Peralta III MR, Chiasson M, Lafortune K, Pellegrini L, Seress L, Toth K: Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death in rats. J Physiol 2007, 578, 1, 275–289.
  10. Trombley PQ, Horning MS, Blakemore LJ: Interactions Between Carnosine and Zinc and Copper. Implications for Neuromodulation and Neuroprotection. Biochemistry (Mosc) 2000, 65, 807-816.
  11. Karol N, Brodski C, Bibi Y, Kaisman T, Forberg M, Hershfinkel M, Sekler I, Silverman WF: Zinc homeostatic proteins in the CNS are regulated by crosstalk between extracellular and intracellular zinc. J Cell Physiol 2010, 224, 567-574.
  12. Sekler I, Moran A, Hershfinkel M, Dori A, Margulis A, Birenzweig N, Nitzan Y, Silverman WF: Distribution of the zinc transporter ZnT-1 in comparison with chelatable zinc in the mouse brain. J Comp Neurol 2002, 447, 201-219.
  13. Tsuda M, Imaizumi K, Katayama T, Kitagawa K, Wanaka A, Tohyama M, Takagi T: Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J Neurosci 1997, 17, 6678-6684.
  14. Choi DW, Koh JY: Zinc and brain injury. Ann Rev Neurosc 1998, 21, 347-375. doi: 10.1146/annurev. neuro.21.1.347
  15. Goldsteins G, Keksa-Goldsteine V, Ahtoniemi T, Jaronen M, Arens E, Akerman K, Chan PH, Koistinaho J: Deleterious Role of Superoxide Dismutase in the Mitochondrial Intermembrane Space. J Biol Chem 2008, 283, 8446-8452.
  16. Gough M, Parr-Sturgess C, Parkin E: Zinc Metalloproteinases and Amyloid Beta-PeptideMetabolism: The Positive Side of Proteolysis in Alzheimer’s Disease. Bioch Res Int 2011, Article ID 721463, doi:10.1155/2011/721463.
  17. Byung SS, Seok JW, Byung HY, Kauppinen TM, Sang WS: Prevention of hypoglycemia-induced neuronal death by hypothermia. JCBFM 2010, 30, 390–402.
  18. Yoo MH, Lee JY, Lee SE, Koh JY, Yoon YH: Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo. Invest Ophthalmol Vis Sci 2004, 45, 1523–1530.
  19. Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, Day AL, Kristal BS, Friedlander RM: Methazolamide and Melatonin Inhibit Mitochondrial Cytochrome C Release and Are Neuroprotective in Experimental Models of Ischemic Injury. Stroke 2009, 40, 1877-1885.
  20. Gekle M, Golenhofen N, Oberleithner H, Silbernagl S: Rapid activation of Na+/H+ exchange by aldosterone in renal epthelial cell requires Ca2+ and stimulation of a plasma membrane proton conductance. Proc Natl Acad Sci USA 1996, 93, 10500–10504.
  21. Tubek S: Selected Zinc Metabolism Parameters in Women with Arterial Hypotension. Biol Trace Elem Res 2007, 116, 73–79.
  22. Tubek S: Correlations between serum zinc concentrations and oxygen balance parameters in patients with primary arterial hypertension. Biol Trace Elem Res 2007, 115, 213-22.
  23. Tubek S, Grzanka P, Tubek I: The role of zinc in hemostasis. Biol Trace Elem Res 2008, 121, 1–8.
  24. Tubek S: Zinc balance normalization: an important mechanism of angiotensin-converting enzyme inhibitors and other drugs decreasing the activity of the rennin-angiotensin-aldosterone system. Biol Trace Elem Res 2007, 115, 223–226.
  25. Beharier O, Etzion Y, Katz A: Crosstalk between L-type calcium channels and ZnT-1, a new player in ratedependent cardiac electrical remodelling. Cell Calcium 2007, 42, 71–82.
  26. Tubek S: Selected zinc metabolism parameters in premenopausal and postmenopausal women with moderate and severe primary arterial hypertension. Biol Trace Elem Res 2007, 116, 249–256.