Advances in Clinical and Experimental Medicine
2012, vol. 21, nr 2, March-April, p. 179–186
Publication type: original article
Language: English
The Potential Role of Photodynamic Therapy in the Treatment of Malignant Melanoma – an in vitro Study
Możliwości zastosowania terapii fotodynamicznej w leczeniu czerniaka – badania in vitro
1 Department of Medical Biochemistry, Wroclaw Medical University, Poland
2 Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Poland
Abstract
Background. Melanoma is the most severe of skin neoplasms as it may grow rapidly and metastasize. The application of photodynamic therapy (PDT) opens up new prospects in the treatment of this tumor. Numerous studies suggest that the exposure of tumor cells to PDT can lead to cellular and molecular mechanisms which mediate oxidative stress in cells.
Objectives. The aim of this study was to evaluate in vitro the influence of photodynamic therapy on the human melanoma Me45 cell line.
Material and Methods. Photofrin® (Ph) was used as a photosensitizer.
Results. Viability studies have shown that there are significant differences between cells after PDT and cells without irradiation. After 24 hours of incubation with a 20 μg/ml concentration of Ph and with irradiation, less than 20% of the cells survived. In the control (without PDT), 65% of the cells survived.
Conclusion. The mitochondrial localization of Ph is significant, as it may lead to disturbances of mitochondrial transmembrane potential and finally to apoptotic cell death. The expressions of manganese superoxide dismutase and heme oxygenase and the level of carbonyl and thiol groups are indicating factors for oxidative stress in Me45 cells.
Streszczenie
Wprowadzenie. Czerniak należy do grupy silnie złośliwych nowotworów skóry, ponieważ cechuje go szybki wzrost oraz wczesne tworzenie przerzutów. Zastosowanie terapii fotodynamicznej (PDT) otwiera nowe perspektywy w leczeniu tego nowotworu. Liczne badania sugerują, że ekspozycja komórek nowotworowych na PDT może prowadzić do uruchamiania komórkowych i molekularnych mechanizmów, które prowadzą do stresu oksydacyjnego w komórkach guza.
Cel pracy. Ocena wpływu PDT na ludzką linię komórkową czerniaka (Me45).
Materiał i metody. Jako fotouczulacz zastosowano Photofrin® (Ph).
Wyniki. Badanie przeżywalności komórek wykazało znaczące różnice między żywotnością komórek po zastosowanej PDT a komórkami bez naświetlania. Po 24-godzinnej inkubacji komórek po PDT z 20 mg/ml Ph przeżyło mniej niż 20% komórek, podczas gdy w próbie z Ph, ale bez naświetlania, przeżyło 65% komórek.
Wnioski. Zaobserwowano mitochondrialne umiejscowienie fotouczulacza, co może prowadzić do zaburzenia potencjału transbłonowego mitochondriów i ostatecznie do śmierci komórek na drodze apoptozy. Ekspresja mitochondrialnej dysmutazy ponadtlenkowej oraz hemooksygenazy-1, a także zwiększone stężenie markerów uszkodzenia białek świadczą o zaistniałym stresie oksydacyjnym w komórkach czerniaka linii Me45.
Key words
photodynamic therapy, Photofrin, melanoma, apoptosis
Słowa kluczowe
terapia fotodynamiczna, Photofrin, czerniak, apoptoza
References (29)
- Brown SB, Brown EA, Walker I: The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 2004, 5, 497–508.
- Castano AP, Demidova TN, Hamblin MR: Mechanisms in photodynamic therapy: part two – cellular signaling, cell metabolism and modes of cell death. Photodiag Photodyn Ther 2005, 2, 1–23.
- Wawrzuta A, Saczko J, Kulbacka J, Chwiłkowska A: Can photodynamic therapy be an alternative method in melanoma treatment? Przegl Dermatol 2009, 96, 240–243.
- Ramiro DA, Bruno JM, Arselio PC, Carlos BD: Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 2004, 1704, 59–86.
- Robertson CA, Hawkins Evans D, Abrahamse H: Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 2009, 96, 1–8.
- Lim DS, Ko SH, Lee WY: Silkworm-pheophorbide a mediated photodynamic therapy against B16F10 pigmented melanoma. J Photochem Photobiol B 2004, 74, 1–6.
- Saczko J, Skrzypek W, Chwilkowska A, Choromanska A, Pola A, Gamian A, Kulbacka J: Photo-oxidative action in cervix carcinoma cells induced by HpD-mediated photodynamic therapy. Exp Oncol 2009, 31, 195–199.
- Kolagal V, Karanam SA, Dharmavarapu PK, D’Souza R, Upadhya S, Kumar V, Kedage V, Muttigi MS, Shetty JK, Prakash M: Determination of oxidative stress markers and their importance in early diagnosis of uremia-related complications. Indian J Nephrol 2009, 19, 8–12.
- Dolgachev V, Oberley LW, Huang TT, Kraniak JM, Tainsky MA, Hanada K, Separovic D: A role for manganase superoxide dismutase in apoptosis after photosensitization. Biochem Biophys Res Commun 2005, 332, 411–417.
- Vile GF, Basu-Modak S, Waltner C, Tyrrell RM: Heme oxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts. Proc Natl Acad Sci USA 1994, 91, 2607–2610.
- Moncieff MD, Thompson JF, Quinn M, Stretch JR: Reconstruction after wide excision of primary cutaneous melanomas: part II – the extremities. Lancet Oncol 2009, 10, 810–815.
- Kusmierz D, Latocha M, Zielinska A, Nawrocka-Musial D, Sliupkas-Dyrda E: The Expression of the Melanogenesis Pathway Genes TYR, TYRP−1, and TYRP−2 and the Synthesis of Melanin in SH−4 Melanoma Cells After Photodynamic Therapy with Photolon. Adv Clin Exp Med 2009, 18, 449–459.
- Saczko J, Kulbacka J, Chwilkowska A, Drag-Zalesinska M, Wysocka T, Lugowski M, Banas T: The influence of photodynamic therapy on apoptosis in human melanoma cell line. Folia Histochem Cytobiol 2005, 43, 129–132.
- Saczko J, Chwilkowska A, Kulbacka J, Berdowska I, Zielinski B, Drag-Zalesinska M, Wysocka T, Lugowski M, Banas T: Photooxidative action in cancer and normal cells induced by the use of photofrin in photodynamic therapy. Folia Biol 2008, 54, 24–29.
- Ellman GL: Tissue sulfhydryl groups. Arch Biochem Biophys 1959, 82, 70–77.
- Ambrosone CB, Ahn J, Singh KK, Rezaishiraz H, Furberg H, Sweeney C, Coles B, Trovato A: Polymorphisms in Genes Related to Oxidative Stress (MPO, MnSOD, CAT) and Survival After Treatment for Breast Cancer. Cancer Res 2005, 65, 1105–1111.
- Kolarova H, Macecek J, Nevrelova P, Huf M, Tomecka M, Bajgar R, Mosinger J, Strnad M: Photodynamic therapy with zinc-tetra (p-sulfophenyl) porphyrin bound to cyclodextrin induces single stand breaks of cellular DNA in G361 melanoma cells. Toxicol in Vitro 2005, 19, 971–974.
- Nowak-Sliwinska P, Karocki A, Elas M, Pawlak A, Stochel G, Urbanska K: Verteporfin, Photofrin II and merocyanine 540 as PDT photosensitizer against melanoma cells. Biochem Biophys Res Commun 2006, 349, 549– 555.
- Radestock A, Elsner P, Gitter B, Hipler UC: Induction of Apoptosis in HaCaT Cells by Photodynamic Therapy with Chlorin e6 or Pheophorbide A. Skin Pharmacol Physiol 2007, 20, 3–9.
- Woodburn KW, Fan Q, Kessel D, Luo Y, Young SW: Photodynamic Therapy of B16F10 Murine Melanoma with Lutetium Texaphyrin. J Invest Dermatol 1998, 110, 746–751.
- Yagc R, Ersoz I, Erdurmu M, Gurel A, Duman S: Protein carbonyl levels in the aqueous humour and serum of patients with pseudoexfoliation syndrome. Eye 2008, 22, 128–131.
- Saczko J, Kulbacka J, Chwilkowska A, Pola A, Lugowski M, Marcinkowska A, Malarska A, Banas T: Cytosolic superoxide dismutase activity after photodynamic therapy, intracellular distribution of Photofrin II and hypericin, and P-glycoprotein localization in human colon adenocarcinoma. Folia Histochem Cytobiol 2007, 45, 93–97.
- Golab J, Nowis D, Skrzycki M, Czeczot H, Baranczyk-Kuzma A, Wilczynski GM, Makowski M, Mroz P, Kozar K, Kaminski R, Jalili A, Kopec M, Grzela T, Jakobisiak M: Antitumor effects of photodynamic therapy are potentiated by 2-methoxyestradiol. A superoxide dismutase inhibitor. J Biol Chem 2003, 278, 407–414.
- Hoshidaa S, Nishidab M, Yamashitaa N, Igarashib J, Aokib K, Horia M, Kuzuyab T, Tada M: Heme Oxygenase-1 Expression and Its Relation to Oxidative Stress During Primary Culture of Cardiomyocytes. J Mol Cell Cardiol 1996, 28, 1845–1855.
- Gomer CJ, Luna M, Ferrario A, Rucker N: Increased transcription and translation of heme oxygenase in Chinese hamster fibroblasts following photodynamic stress or Photofrin II incubation. Photochem Photobiol 1991, 53, 275–279.
- Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczynski GM, Glodkowska E, Mrowka P, Issat T, Dulak J, Jozkowicz A, Was H, Adamek M, Wrzosek A, Nazarewski S, Makowski M, Stoklosa T, Jakobisiak M, Golab J: Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 2006, 25, 3365–3374.
- Frank J, Lornejad-Schafer MR, Schoffl H, Flaccus A, Lambert Ch, Biesalski HK: Inhibition of heme oxygenase1 increases responsiveness of melanoma cells to ALA-based photodynamic therapy. Int J Oncol 2007, 31, 1539–1545.
- Chen Y, Zheng W, Li Y, Zhong J, Ji J, Shen P: Apoptosis induced by methylene-blue-mediated photodynamic therapy in melanomas and the involvement of mitochondrial dysfunction revealed by proteomics. Cancer Sci 2008, 99, 2019–2027.
- Das N, Gupta S, Mazumdar S: Direct Observation of Release of Cytochrome c from Lipid-Encapsulated Protein by Peroxide and Superoxide: A Possible Mechanism for Drug-Induced Apoptosis. Biochem Biophys Res Commun 2001, 286, 311–314.