Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.4)
Index Copernicus  – 161.11; MEiN – 140 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2011, vol. 20, nr 6, November-December, p. 721–727

Publication type: original article

Language: English

Pulsing Electromagnetic Field and Death of Proliferating Peripheral Blood Mononuclear Cells from Patients with Acute Myelogenic Leukemia

Pulsacyjne pole elektromagnetyczne a śmierć komórkowa proliferujących leukocytów jednojądrzastych pochodzących od pacjentów z ostrą białaczką mieloidalną

Jolanta Kaszuba-Zwoińska1,, Edyta Zdziłowska2,, Paulina Chorobik3,, Zofia Słodowska-Hajduk1,, Kajetan Juszczak1,, Wiesław Zaraska4,, Piotr J. Thor1,

1 Department of Pathophysiology, Jagiellonian University – Medical College, Cracow, Poland

2 Clinic of Hematology, Jagiellonian University – Medical College, Cracow, Poland

3 Department of Immunology, Jagiellonian University – Medical College, Cracow, Poland

4 Institute of Electron Technology, Cracow, Poland

Abstract

Background. A pulsing electromagnetic field (PEMF) influenced the viability of proliferating in vitro peripheral blood mononuclear cells isolated from Crohn’s disease patients by induction of cell death but did not cause any vital changes in the cells from healthy donors. Experiments with lymphoid cell line U937 have shown a protective effect of PEMF on puromycin-treated cells.
Objectives. The current study aimed to investigate the influence of PEMF on native proliferating leukocytes originating from newly-diagnosed acute myelogenous leukemia (AML) patients.
Material and Methods. The effects of exposure to PEMF were studied in peripheral blood mononuclear cells from 8 patients with AML. Peripheral blood mononuclear cells (PBMCs) were stimulated with three doses of PEMF for 3h each with 24h intervals. After the last stimulation, the cells were double stained with Annexin V and 7-aminoactinomycin D (7-AAD) dye to estimate viability by flow cytometry analysis.
Results. Results indicated an increase of Annexin V-positive as well as double stainedand 7-AAD-positive cells after exposure to threefold PEMF stimulation.
Conclusion. A low-frequency pulsing electromagnetic field induces cell death in native proliferating cells isolated from AML patients. The increased vulnerability of proliferating PBMCs may be potentially applied in the therapy of AML.

Streszczenie

Wprowadzenie. Pulsacyjne pole elektromagnetyczne (PEMF) wpływa na żywotność proliferujących in vitro jednojądrzastych leukocytów krwi obwodowej (PBMCs) izolowanych od pacjentów z chorobą Crohna przez wywołanie śmierci komórkowej, a nie powoduje zmian w żywotności komórek od zdrowych dawców. Eksperymenty prowadzone na linii komórkowej U937 wykazały ochronny wpływ PEMF na komórki poddane działaniu puromycyny.
Cel pracy. Bieżące badania mają na celu przetestowanie wpływu PEMF na natywnie proliferujące leukocyty pochodzące od pacjentów z AML.
Materiał i metody. Działanie wywierane przez PEMF było badane na jednojądrzastych leukocytach krwi obwodowej uzyskanej od 8 nowo zdiagnozowanych pacjentów. PBMCs były poddawane 3-krotnie po 3 godz. jednorazowo działaniu PEMF w odstępach 24 godz. Po ostatniej stymulacji wybarwiono komórki aneksyną V i 7-amino-aktynomycyną D do analizy żywotności metodą cytometrii przepływowej.
Wyniki. Uzyskano wzrost liczby komórek pozytywnie barwiących się aneksyną V, 7-amino-aktynomycną D oraz obydwoma markerami po 3-krotnej ekspozycji PEMF.
Wnioski. Pulsacyjne pole elekromagnetyczne wywołuje śmierć komórkową w natywnie proliferujących komórkach pochodzących od pacjentów z AML. Zwiększona podatność proliferujących leukocytów jednojądrzastych na działanie PEMF potencjalnie może być wykorzystana do leczenia AML.

Key words

pulsing electromagnetic field, acute myelogenous leukemia, apoptosis, necrosis

Słowa kluczowe

pulsacyjne pole elektromagnetyczne, ostra białaczka mieloidalna, apoptoza, martwica

References (45)

  1. Kaszuba-Zwoińska J, Ciećko-Michalska I, Madroszkiewicz D, Mach T, SłodowskaHajduk Z, Rokita E, Zaraska W, Thor P: Magnetic field anti-inflammatory effects in Crohn’s disease depends upon viability and cytokine profile of the immune competent cells. J Physiol Pharmacol 2008, Mar 9
  2. , 177–8.
  3. Kaszuba-Zwoińska J, Wojcik K, Bereta M, Ziomber A, Pierzchalski P, Rokita E, Marcinkiewicz J, Zaraska W, Thor P: Pulsating electromagnetic field stimulation prevents cell death of puromycin treated U937 cell line. J Physiol Pharmacol 2010, Apr 61, 201–205.
  4. Breccia M, Alimena G: NF-k as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia. Expert Opin Ther Targets 2010, 4, 1157–1176. Review.
  5. Vardiman JW, Thiele J, Arber DA et al.: The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasm’s and acute leukemia: rationale and important changes. Blood 2009, 114, 937–951.
  6. Foran JM: New prognostic markers in acute myeloid leukemia: perspective from the clinic. Hematology Am Soc Hematol Educ Program 2010, 2010, 47–55.
  7. Peters AH, Schwaller J: Epigenetic mechanisms in acute myeloid leukemia. Prog Drug Res 2011, 67, 197–219.
  8. Pollyea DA, Kohrt HE, Medeiros BC: Acute myeloid leukaemia in the elderly: a review. Br J Haematol 2011, 152, 524–542.
  9. Marcucci G, Haferlach T, Döhner H: Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 2011, Feb 10, 29, 475–486.
  10. Ahuja YR, Vijayashree B, Saran R, Jayashri EL Manoranjani JK, Bhargava SC: In vitro effects of low-level, lowfrequency electromagnetic fields on DNA damage in human leucocytes by comet assay. Indian J Biochem Biophys 1999, 36, 318–322.
  11. Delimaris J, Tsilimigaki S, Messini-Nicolaki N, Ziros E, Piperakis SM: Effects of pulsed electric fields on DNA of human lymphocytes. Cell Biol Toxicol 2006, 22, 409–415.
  12. Hong R, Zhang Y, Liu Y, Weng EQ: Effects of extremely low frequency electromagnetic fields on DNA of testicular cells and sperm chromatin structure in mice. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2005, 23, 414–417.
  13. Ivancsits S, Diem E, Pilger A, Rudiger HW, Jahn O: Induction of DNA strand breaks by intermittent exposure to extremely-lowfrequency electromagnetic fields in human diploid fibroblasts. Mutat Res 2002, 519, 1–13.
  14. Ivancsits S, Diem E, Jahn O, Rudiger HW: Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech Aging Dev 2003, 124, 847–850.
  15. Ivancsits S, Pilger A, Diem E, Jahn O, Rudiger HW: Cell typespecific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res 2005, 583, 184–188.
  16. Jajte J, Zmyslony M, Palus J, Dziubaltowska E, Rajkowska E: Protective effect of melatonin against in vitro iron ions and 7mT 50Hz magnetic field-induced DNA damage in rat lymphocytes. Mutat Res 2001, 483, 57–64.
  17. Lai H, Singh NP: Melatonin, N-tert-butyl-alpha-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res 1997, 22, 152–162.
  18. Lai H, Singh NP: Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 2004, 112, 687–694.
  19. Lourencini da Silva R, Albano F, Lopes dos Santos LR, Tavares AD Jr, Felzenszwalb I: The effect of electromagnetic field exposure on the formation of DNA lesions. Redox Rep 2000, 5, 299–301.
  20. Schmitz C, Keller E, Freuding T, Silny J, Korr H: 50-Hz magnetic field exposure influences DNA repair and mitochondrial DNA synthesis of distinct cell types in brain and kidney of adult mice. Acta Neuropathol (Berl) 2004, 107, 257–264.
  21. Svedenstal BM, Johanson KJ, Mild KH: DNA damage induced in brain cells of CBA mice exposed to magnetic fields. In Vivo 1999, 13, 551–552.
  22. Winker R, Ivancsits S, Pilger A, Adlkofer F, Rudiger HW: Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low-frequency electromagnetic fields. Mutat Res 2005, 585, 43–49.
  23. Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascenzo M, Grassi C, Azzena GB, Cittadini A: 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 2005, 1743, 120–129.
  24. Yokus B, Cakir DU, Akdag MZ, Sert C, Mete N: Oxidative DNA damage in rats exposed to extremely low frequency electro magnetic fields. Free Radic Res 2005, 39, 317–323.
  25. Zmyslony M, Palus J, Jajte J, Dziubaltowska E, Rajkowska E: DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50 Hz). Mutat Res 2000, 453, 89–96.
  26. Chow K, Tung WL: Magnetic field exposure enhances DNA repair through the induction of DnaK/J synthesis. FEBS Lett 2000, 478, 133–136.
  27. Robison JG, Pendleton AR, Monson KO, Murray BK, O’Neill KL: Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics 2002, 23, 106–112.
  28. Lai H, Singh NP: Melatonin and a spin-trap compound block radiofrequency electromagnetic radiationinduced DNA strand breaks in rat brain cells. Bioelectromagnetics 1997, 18, 446–454.
  29. Lai H, Singh NP: Effects of microwaves and a temporally incoherent magnetic field on single and double DNA strand breaks in rat brain cells. Electromag Biol Med 2005, 24, 23–29.
  30. Oral B, Guney M, Ozguner F, Karahan N, Mungan T, Comlekci S, Cesur G: Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Adv Ther 2006, 23, 957–973.
  31. Simków M: Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr Med Chem 2007, 14, 1141–1152.
  32. Phillips JL, Singh NP, Lai H: Electromagnetic fields and DNA damage. Pathophysiology 2009, 16, 2–3, 79–88.
  33. Hyde RK, Liu PP: The role of microRNAs in acute myeloid leukemia. F1000 Biol Rep 2010, 24, 2, 81.
  34. Ebert BL: Genetic deletions in AML and MDS. Best Pract Res Clin Haematol 2010, 23, 4, 457–461.
  35. Marcucci G, Mrózek K, Radmacher MD, Garzon R, Bloomfield CD: The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011, 27, 117, 4, 1121–1129.
  36. Berg H: Problems of weak electromagnetic field effects in cell biology. Bioelectrochem Bioenerg 1999, 48, 2, 355–360.
  37. Narita K, Hanakawa K, Kasahara T, Hisamitsu T, Asano K: Induction of apoptotic cell death in human leukemic cell line, HL-60, by extremely low frequency magnetic fields: analysis of the possible electric mechanisms in vitro. In Vivo 1997, 1 1, 4, 329–335.
  38. Wang X, Zhou A, Liu M, Yu H, Pang L, Zhu M, Wang L, Berg H: Effects of ELF capacitively coupled weak electric fields on metabolism of 6B1 cells. Bioelectrochem Bioenerg 1999, 48, 2, 369–373.
  39. Aldinucci C, Garcia JB, Palmi M: The effect of strong static magnetic field on lymphocytes. Bioelectromagnetics 2003, 24, 109–117.
  40. Wetzel BJ, Nindl G, Vesper DN, Swez JA, Jasti AC, Johnson MT: Electromagnetic field effects: changes in protein phosphorylation in the Jurkat E6.1 cell line. Biomed Sci Instrum 2001, 37, 203–208.
  41. Gluck B, Guntzschel V, Berg H: Inhibition of proliferation of human lymphoma cells U937 by a 50 Hz electromagnetic field. Cell Mol Biol (Noisy-le-grand) 2001, 47, Online Pub: OL115-7.
  42. Arafa HM, Abd-Allah AR, El-Mahdy MA, Ramadan LA, Hamada FM: Immunomodulatory effects of L-carnitine and q10 in mouse spleen exposed to lowfrequency high-intensity magnetic field. Toxicology 2003, 187, 171– 181.
  43. Johnson MT, Vanscoy-Cornett A, Vesper DN: Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro. Biomed Sci Instrum 2001, 37, 215–220.
  44. Onodera H, Jin Z, Chida S, Suzuki Y, Tago H, Itoyama Y: Effects of 10-T static magnetic field on human peripheral blood immune cells. Radiat Res 2003, 159, 775–779.
  45. Johnson MT, Waite LR, Nindl G: Noninvasive treatment of inflammation using electromagnetic fields: current and emerging therapeutic potential. Biomed Sci Instrum 2004, 40, 469–474.