Advances in Clinical and Experimental Medicine
2011, vol. 20, nr 1, January-February, p. 87–91
Publication type: review article
Language: English
Membrane Zinc Transporters Znt-1 and Znt-5 in Circulatory System Pathophysiology
Transportery błonowe cynku ZnT-1 i ZnT-5 w patofizjologii układu krążenia
1 Department of Pathophysiology, Wroclaw Medical University, Poland
2 Department of Internal Diseases, Provincial Hospital in Opole, Poland
3 Military Hospital in Żary, Poland
Abstract
The paper presents current information concerning the significance of membrane zinc transporters in circulatory system pathophysiology. The presence of ZnT-1, ZnT-3, ZnT-5 and ZnT-7 carriers in the heart has been reported. Two of these – ZnT-1 and ZnT-5 – reveal a relationship with some cardiac conditions. ZnT-1 occurs in the cellular membrane, and ZnT-5 in the membrane of cell organelles, including the Golgi apparatus. Elucidating the role of ZNT-1 and other proteins in intracellular zinc contents could have useful implications for the treatment of cardiovascular diseases.
Streszczenie
W pracy przedstawiono aktualne dane dotyczące roli błonowych transporterów cynku w patofizjologii układu krążenia. W sercu stwierdza się obecność nośników ZnT–1, ZnT–3, ZnT–5 i ZnT–7. Dwa z nich: ZnT–1 i ZnT–5, wykazują związek z patologiami układu krążenia. ZnT–1 występuje w błonie komórkowej, a ZnT–5 w błonach organelli komórkowych, w tym aparatu Golgiego. Wyjaśnienie roli ZnT–1 i innych białek wpływających na wewnątrzkomórkowe stężenie cynku może mieć istotne znaczenie praktyczne w leczeniu chorób układu sercowo-naczyniowego.
Key words
membrane zinc transporters, ZnT–1, ZnT–5, circulatory system diseases
Słowa kluczowe
transportery błonowe cynku, ZnT-1, ZnT-5, choroby układu krążenia
References (40)
- Vallee BL, Falchuk KH: The biochemical basis of zinc physiology. Physiol Rev 1993, 73, 79–87.
- Simons TJB: Intracellular free zinc and zinc buffering in human red blood cells. J Membrane Biol 1991, 123, 63–71.
- Karol N, Brodski C, Bibi Y et al.: Zinc homeostatic proteins in the CNS are regulated by crosstalk between extracellular and intracellular zinc. J Cell Physiol 2010 Apr 28. [Epub ahead of print]
- Tubek S: Selected zinc metabolism parameters in relation to insulin, renin–angiotensin–aldosterone system and blood pressure in healthy subjects – gender differences. Biol Trace Elem Res 2006, 114, 65–72.
- Overbeck S, Uciechowski P, Ackland ML, Ford D, Rink L: Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9. J Leukoc Biol 2008, 83, 368–380.
- Etzion Y, Ganiel A, Beharier O et al.: Correlation between atrial ZnT-1 expression and atrial fibrillation in humans: a pilot study. J Cardiovasc Electrophysiol 2008, 19, 157–164.
- Levy S, Beharier O, Etzion Y et al.: Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 2009, 284, 32434–32443.
- Kamalov G, Ahokas RA, Zhao W et al.: Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism. Am J Physiol Heart Circ Physiol 2010, 298, H385–394.
- Thomas M, Vidal A, Bhattacharya SK et al.: Zinc dyshomeostasis in rats with aldosteronism. Response to spironolactone. Am J Physiol Heart Circ Physiol 2007, 293, H2361–2366.
- Wallenborn JG, Schladweiler MJ, Richards JH, Kodavanti UP: Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals. Toxicol Appl Pharmacol 2009, 241(1), 71–80.
- Inoue K, Matsuda K, Itoh M et al.: Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet 2002, 11, 1775–1784.
- Tubek S: Wpływ blokady spironolaktonem receptora aldosteronowego na stałą wypływu jonów cynku z limfocytów chorych na nadciśnienie tętnicze. Post Med Klin Dośw 1994, 3, 27–33.
- Sato M, Kurihara N, Moridaira K et al.: Dietary Zn deficiency does not influence systemic blood pressure and vascular nitric oxide signaling in normotensive rats. Biol Trace Elem Res 2003, 91, 157–172.
- Segal D, Ohana E, Besser L, Hershfinkel M, Moran A, Sekler I: A role for ZnT-1 in regulating cellular cation influx. Biochem Biophys Res Commun 2004, 323, 1145–1150.
- Devergnas S, Chimienti F, Naud N et al.: Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study. Biochem Pharmacol 2004, 68, 699–709.
- Barnett JB, Hamer DH, Meydani SN: Low zinc status: a new risk factor for pneumonia in the elderly? Nutr Rev 2010, 68, 30–37.
- Soinio M, Marniemi J, Laakso M, Pyörälä K, Lehto S, Rönnemaa T: Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care 2007, 30, 523–528.
- Giannoglou GD, Konstantinou DM, Kovatsi L, Chatzizisis YS, Mikhailidis DP: Association of reduced zinc status with angiographically severe coronary atherosclerosis: a pilot study. Angiology 2010, 61, 449–455. [Epub 2010 June 7].
- Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z: Molecular mechanism underlying activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol 2009, 297, H569–575. [Epub 2009 June 12].
- Song MK, Rosenthal MJ, Song AM, Uyemura K, Yang H, Ament ME, Yamaguchi DT, Cornford EM: Body weight reduction in rats by oral treatment with zinc plus cyclo-(His-Pro). Br J Pharmacol 2009, 156, 442–450 [Epub 2009 May 5].
- Lal A: Effect of zinc sulphate on infarct size in experimental myocardial infarction. Indian J Med Res 1991, 94, 316–321.
- Tubek S: Zinc balance normalization: An important mechanism of angiotensin converting enzyme inhibitors and other drugs decreasing the activity of the rennin-angiotensin-aldosterone system. Biol Trace Elem Res 2007, 115, 223–226.
- Bobilya DJ, Gauthier NA, Karki S, Olley BJ, Thomas WK: Longitudinal changes in zinc transport kinetics, metallothionein and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment. J Nutr Biochem 2008, 19, 129–137.
- Lehmann HM, Brothwell BB, Volak LP, Bobilya DJ: Zinc status influences zinc transport by porcine brain capillary endothelial cells. J Nutr 2002, 132, 2763–2768.
- McClung JP, Bobilya DJ: The influence of zinc status on the kinetics of zinc uptake into cultured endothelial cells. J Nutr Biochem 1999, 10, 484–489.
- Hennig B, Wang Y, Ramasamy S, McClain CJ: Zinc deficiency alters barrier function of cultured porcine endothelial cells. J Nutr 1992, 122, 1242–1247.
- McClain C, Morris P, Hennig B: Zinc and endothelial function. Nutrition 1995, 11 (Suppl), 117–120.
- Ren M, Rajendran R, Ning P: Zinc supplementation decreases the development of atherosclerosis in rabbits. Free Radic Biol Med 2006, 41, 222–225.
- Meerarani P, Ramadass P, Toborek M, Bauer HC, Bauer H, Hennig B: Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor alfa. Am. J. Clin. Nutr 2000, 7, 81–87.
- Tubek S, Tubek I: Significance of Zinc in Nephrotoxicity of Contrast Media used in Imaging Diagnostics of Cardiovascular System. Biol Trace Elem Res 2007, 117, 1–5.
- Tubek S: Role of zinc in regulation of arterial blood pressure and arterial hypertension etiopathogenesis. Biol Trace Elem Res 2007, 117, 39–51.
- Yoo MH, Lee JY, Lee SE, Koh JY, Yoon YH: Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo. Invest Ophthalmol Vis Sci 2004, 45, 1523–1530.
- Maret W, Sandstead HH: Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 2006, 20, 3–18.
- Devirgiliis C, Zalewski PD, Perozzi G, Murgia C: Zinc fluxes and zinc transporters genes in chronic diseases. Mutat Res 2007, 622, 84–93.
- Mocchegiani E, Giacconi R, Malavolta M: Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med 2008, 14, 419–428.
- Witte KK, Nikitin NP, Parker AC et al.: The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J 2005, 26, 2238–2244.
- Nolte C, Gore A, Sekler I et al.: ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 2004, 48, 145–55. Erratum in Glia 2004, 48, 346.
- Kim AH, Sheline CT, Tian M et al.: L-type Ca(2+) channel-mediated Zn(2+) toxicity and modulation by ZnT-1 in PC12 cells. Brain Res 2000, 886, 99–107.
- Kaisman-Elbaz T, Sekler I, Fishman D et al.: Cell death induced by zinc and cadmium is mediated by clusterin in cultured mouse seminiferous tubules. J Cell Physiol 2009, 220, 222–229.
- Sadineni V, Schöneich C: Age-dependent oxidation and aggregation of ZnT-1: a role for metal catalyzed oxidation? Exp Gerontol 2007, 42, 1130–1136.