Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2011, vol. 20, nr 1, January-February, p. 87–91

Publication type: review article

Language: English

Membrane Zinc Transporters Znt-1 and Znt-5 in Circulatory System Pathophysiology

Transportery błonowe cynku ZnT-1 i ZnT-5 w patofizjologii układu krążenia

Małgorzata Sobieszczańska1,, Sławomir Tubek2,, Monika Daszkiewicz3,

1 Department of Pathophysiology, Wroclaw Medical University, Poland

2 Department of Internal Diseases, Provincial Hospital in Opole, Poland

3 Military Hospital in Żary, Poland

Abstract

The paper presents current information concerning the significance of membrane zinc transporters in circulatory system pathophysiology. The presence of ZnT-1, ZnT-3, ZnT-5 and ZnT-7 carriers in the heart has been reported. Two of these – ZnT-1 and ZnT-5 – reveal a relationship with some cardiac conditions. ZnT-1 occurs in the cellular membrane, and ZnT-5 in the membrane of cell organelles, including the Golgi apparatus. Elucidating the role of ZNT-1 and other proteins in intracellular zinc contents could have useful implications for the treatment of cardiovascular diseases.

Streszczenie

W pracy przedstawiono aktualne dane dotyczące roli błonowych transporterów cynku w patofizjologii układu krążenia. W sercu stwierdza się obecność nośników ZnT–1, ZnT–3, ZnT–5 i ZnT–7. Dwa z nich: ZnT–1 i ZnT–5, wykazują związek z patologiami układu krążenia. ZnT–1 występuje w błonie komórkowej, a ZnT–5 w błonach organelli komórkowych, w tym aparatu Golgiego. Wyjaśnienie roli ZnT–1 i innych białek wpływających na wewnątrzkomórkowe stężenie cynku może mieć istotne znaczenie praktyczne w leczeniu chorób układu sercowo-naczyniowego.

Key words

membrane zinc transporters, ZnT–1, ZnT–5, circulatory system diseases

Słowa kluczowe

transportery błonowe cynku, ZnT-1, ZnT-5, choroby układu krążenia

References (40)

  1. Vallee BL, Falchuk KH: The biochemical basis of zinc physiology. Physiol Rev 1993, 73, 79–87.
  2. Simons TJB: Intracellular free zinc and zinc buffering in human red blood cells. J Membrane Biol 1991, 123, 63–71.
  3. Karol N, Brodski C, Bibi Y et al.: Zinc homeostatic proteins in the CNS are regulated by crosstalk between extracellular and intracellular zinc. J Cell Physiol 2010 Apr 28. [Epub ahead of print]
  4. Tubek S: Selected zinc metabolism parameters in relation to insulin, renin–angiotensin–aldosterone system and blood pressure in healthy subjects – gender differences. Biol Trace Elem Res 2006, 114, 65–72.
  5. Overbeck S, Uciechowski P, Ackland ML, Ford D, Rink L: Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9. J Leukoc Biol 2008, 83, 368–380.
  6. Etzion Y, Ganiel A, Beharier O et al.: Correlation between atrial ZnT-1 expression and atrial fibrillation in humans: a pilot study. J Cardiovasc Electrophysiol 2008, 19, 157–164.
  7. Levy S, Beharier O, Etzion Y et al.: Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 2009, 284, 32434–32443.
  8. Kamalov G, Ahokas RA, Zhao W et al.: Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism. Am J Physiol Heart Circ Physiol 2010, 298, H385–394.
  9. Thomas M, Vidal A, Bhattacharya SK et al.: Zinc dyshomeostasis in rats with aldosteronism. Response to spironolactone. Am J Physiol Heart Circ Physiol 2007, 293, H2361–2366.
  10. Wallenborn JG, Schladweiler MJ, Richards JH, Kodavanti UP: Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals. Toxicol Appl Pharmacol 2009, 241(1), 71–80.
  11. Inoue K, Matsuda K, Itoh M et al.: Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum Mol Genet 2002, 11, 1775–1784.
  12. Tubek S: Wpływ blokady spironolaktonem receptora aldosteronowego na stałą wypływu jonów cynku z limfocytów chorych na nadciśnienie tętnicze. Post Med Klin Dośw 1994, 3, 27–33.
  13. Sato M, Kurihara N, Moridaira K et al.: Dietary Zn deficiency does not influence systemic blood pressure and vascular nitric oxide signaling in normotensive rats. Biol Trace Elem Res 2003, 91, 157–172.
  14. Segal D, Ohana E, Besser L, Hershfinkel M, Moran A, Sekler I: A role for ZnT-1 in regulating cellular cation influx. Biochem Biophys Res Commun 2004, 323, 1145–1150.
  15. Devergnas S, Chimienti F, Naud N et al.: Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study. Biochem Pharmacol 2004, 68, 699–709.
  16. Barnett JB, Hamer DH, Meydani SN: Low zinc status: a new risk factor for pneumonia in the elderly? Nutr Rev 2010, 68, 30–37.
  17. Soinio M, Marniemi J, Laakso M, Pyörälä K, Lehto S, Rönnemaa T: Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care 2007, 30, 523–528.
  18. Giannoglou GD, Konstantinou DM, Kovatsi L, Chatzizisis YS, Mikhailidis DP: Association of reduced zinc status with angiographically severe coronary atherosclerosis: a pilot study. Angiology 2010, 61, 449–455. [Epub 2010 June 7].
  19. Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z: Molecular mechanism underlying activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol 2009, 297, H569–575. [Epub 2009 June 12].
  20. Song MK, Rosenthal MJ, Song AM, Uyemura K, Yang H, Ament ME, Yamaguchi DT, Cornford EM: Body weight reduction in rats by oral treatment with zinc plus cyclo-(His-Pro). Br J Pharmacol 2009, 156, 442–450 [Epub 2009 May 5].
  21. Lal A: Effect of zinc sulphate on infarct size in experimental myocardial infarction. Indian J Med Res 1991, 94, 316–321.
  22. Tubek S: Zinc balance normalization: An important mechanism of angiotensin converting enzyme inhibitors and other drugs decreasing the activity of the rennin-angiotensin-aldosterone system. Biol Trace Elem Res 2007, 115, 223–226.
  23. Bobilya DJ, Gauthier NA, Karki S, Olley BJ, Thomas WK: Longitudinal changes in zinc transport kinetics, metallothionein and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment. J Nutr Biochem 2008, 19, 129–137.
  24. Lehmann HM, Brothwell BB, Volak LP, Bobilya DJ: Zinc status influences zinc transport by porcine brain capillary endothelial cells. J Nutr 2002, 132, 2763–2768.
  25. McClung JP, Bobilya DJ: The influence of zinc status on the kinetics of zinc uptake into cultured endothelial cells. J Nutr Biochem 1999, 10, 484–489.
  26. Hennig B, Wang Y, Ramasamy S, McClain CJ: Zinc deficiency alters barrier function of cultured porcine endothelial cells. J Nutr 1992, 122, 1242–1247.
  27. McClain C, Morris P, Hennig B: Zinc and endothelial function. Nutrition 1995, 11 (Suppl), 117–120.
  28. Ren M, Rajendran R, Ning P: Zinc supplementation decreases the development of atherosclerosis in rabbits. Free Radic Biol Med 2006, 41, 222–225.
  29. Meerarani P, Ramadass P, Toborek M, Bauer HC, Bauer H, Hennig B: Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor alfa. Am. J. Clin. Nutr 2000, 7, 81–87.
  30. Tubek S, Tubek I: Significance of Zinc in Nephrotoxicity of Contrast Media used in Imaging Diagnostics of Cardiovascular System. Biol Trace Elem Res 2007, 117, 1–5.
  31. Tubek S: Role of zinc in regulation of arterial blood pressure and arterial hypertension etiopathogenesis. Biol Trace Elem Res 2007, 117, 39–51.
  32. Yoo MH, Lee JY, Lee SE, Koh JY, Yoon YH: Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo. Invest Ophthalmol Vis Sci 2004, 45, 1523–1530.
  33. Maret W, Sandstead HH: Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 2006, 20, 3–18.
  34. Devirgiliis C, Zalewski PD, Perozzi G, Murgia C: Zinc fluxes and zinc transporters genes in chronic diseases. Mutat Res 2007, 622, 84–93.
  35. Mocchegiani E, Giacconi R, Malavolta M: Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med 2008, 14, 419–428.
  36. Witte KK, Nikitin NP, Parker AC et al.: The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J 2005, 26, 2238–2244.
  37. Nolte C, Gore A, Sekler I et al.: ZnT-1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 2004, 48, 145–55. Erratum in Glia 2004, 48, 346.
  38. Kim AH, Sheline CT, Tian M et al.: L-type Ca(2+) channel-mediated Zn(2+) toxicity and modulation by ZnT-1 in PC12 cells. Brain Res 2000, 886, 99–107.
  39. Kaisman-Elbaz T, Sekler I, Fishman D et al.: Cell death induced by zinc and cadmium is mediated by clusterin in cultured mouse seminiferous tubules. J Cell Physiol 2009, 220, 222–229.
  40. Sadineni V, Schöneich C: Age-dependent oxidation and aggregation of ZnT-1: a role for metal catalyzed oxidation? Exp Gerontol 2007, 42, 1130–1136.