Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2011, vol. 20, nr 1, January-February, p. 5–14

Publication type: editorial article

Language: English

Morphogenetic and Clinical Perspectives on the Neogenesis of Pancreatic Duct Ligation-Induced Islet Cells – a Review

Morfogenetyczne i kliniczne perspektywy neogenezy komórek wysp Lagerhansa wywołanej przez podwiązanie przewodu trzustkowego

Venant Tchokonte-Nana1,2,, Benjamin Longo-Mbenza1,, Benedict J. Page2,, Donald F. du Toit2,

1 Walter Sisulu University, School of Medicine, Mthatha, RSA

2 Stellenbosch University, Faculty of Health Sciences, Bellville, RSA

Abstract

This review focuses on recent progress in understanding morphogenetic findings on the neogenesis of islet beta cells following Pancreatic Duct Ligation (PDL) in animal models. These results may give hope for modifications in the treatment of diabetes in general and transplantation in particular. On the basis of this review, translational studies should be developed to allow information on beta-cell neogenesis to be integrated into a potential therapy for Diabetes Mellitus (DM) in humans. Further studies on the development of animal models that will produce PDL islets for transplantation are urgently needed.

Streszczenie

Praca poglądowa skupia się się na obecnym postępie w rozumieniu zmian w neogenezie komórek beta wysp Lagerhansa w następstwie podwiązania przewodu trzustkowego (PDL – pancreatic duct ligation) na modelu zwierzęcym. Uzyskane wyniki pozwalają mieć nadzieję na zmianę zasadniczego leczenia cukrzycy w przyszłości, a zwłaszcza zastosowanie leczenia za pomocą transplantacji. Na podstawie niniejszej pracy poglądowej można stwierdzić, że powinny zostać prowadzone badania, aby pogłębić wiedzę dotyczącą neogenezy komórek beta w możliwej terapii cukrzycy u ludzi. Konieczne są pilne badania na modelu zwierzęcym w celu uzyskania wysp do przeszczepów.

Key words

pancreatic duct ligation, beta cells, neogenesis, islet, gene expression, diabetes mellitus

Słowa kluczowe

podwiązanie przewodu trzustkowego, komórki beta, neogeneza, wyspa, ekspresja genu, cukrzyca

References (47)

  1. Ahren B, Accili D, Boitard C, Efendic C, Henquin JC, Seino S, Steiner DF, Cerasi E: β-cell research – A Decade of rapid growth. Diab Obes Metab 2009, 11 (4), IV–IX.
  2. Erikson V, Swennes I: Diabetes in pregnancy: growth of the fetal pancreatic beta-cell in the rat. Biol Neonate 1982, 42, 239–248.
  3. Bouwens L, Wang R, de Blay E, Pipeleers DG, Kloppel G: Cytokeratins as a marker of ductal cell differentiation and islet neogenesis in the neonatal rat pancreas. Diabetes 1994, 43, 1279–1283.
  4. Solar M, Cardalda C, Houbracken I, Martin M, Maestro MA, de Medts N, Xu X, Grau V, Heiberg H, Bouwens L, Ferrer J: Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Devel Cell 2009, 17, 849–860.
  5. Sarkar SA, Kobberup S, Wong R, Lopez AD, Quayum N, Still T, Kutchma A, Jensen JN, Gianani R, Beattie GM et al.: Global gene expression profiling and histochemical analysis of the developing human foetal pancreas. Diabetologia 2008, 51, 385–297.
  6. Yoon KH, Ko SK, Cho JH et al.: Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 2003, 88, 2300–2308.
  7. Bouwens L, Rooman I: Regulation of pancreatic beta-cell mass. Physiol Rev 2005, 85, 1255–1270.
  8. Xu X, D’hoker J, Strange G, Bonne S, de Leu N, Xiao X, Van De CM, Mellitzer G, Ling Z, Pipeleers D et al.: Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008, 132, 197–207.
  9. Murtaugh LC, Kopinke D: Pancreas stem cells. StemBook, ed. The Stem Cell Research Community, StemBook 2008. Doi/10.3824/stembook.1.3.1, http://www.stembook.org.
  10. Baeyens L, Rooman I, Bouwens L: Stem Cell Therapy for Diabetes: Chapter on Generation of beta cells from acinar cells. 2010. DOI: 10.1007/978-1-60761-366-4_7, p.153–166.
  11. Demeterco C, Hao E, Lee SH, Itkin-Ansari P, Levins F: Adult human beta-cell neogenesis? Diab Obes Metab 2009, 11 , 46–53.
  12. Hebel R, Stromberg MW: Anatomy and embryology of the laboratory rat. BioMed Verlag Wörthsee 1986, p. 55 and p. 231.
  13. Grapin-Botton A, Melton DA: Endoderm development: from patterning to organogenesis. Trends Gen 2000, 16, 124–130.
  14. Steiner DJ, Kim A, Miller K, Hara M: Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2010, 2(3), 135–145.
  15. Cabrera O, Berman M, Kenyon NS, Ricordi C, Bergren P, Caicedo A: The unique cytoarchitecture of human pancreatic islets has implication for islet cell function. PNAS 2006, 103, 2334–2339.
  16. Brisova M, Fowler MJ, Nicholson WE, Chu A Hirshberb B, Harlan DM, Powers AC: Assessment of human islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 2005, 53, 1087–1097.
  17. Stefan Y, Grasso S, Perrelet A, Orci L: The pancreatic polypeptide-rich lobe of the human pancreas: definitive identification of its derivation from the ventral pancreatic primordium. Diabetology 1982, 23, 141–142.
  18. Quesada I, Tuduri E, Ripoll C, Nadal A: Physiology of the pancreatic alpha cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol 2008, 199, 5–19.
  19. Miller K, Kim A, Kilimnik G, Jo J, Moka U, Periwal V, Hara M: Islet formation during the neonatal development in mice. PloS ONE 2009, 4, 7739.
  20. Wierup N, Sundler F: Ultrastructure of ghrelin cells in the human fetus. Cell Tis Res 2005, 319 (3), 423–428.
  21. Vinik A, Rosemberg L, Pittenger GL, Taylor-Fishwick D: Stimulation of pancreatic islet neogenesis: a possible treatment for type 1 and type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 2004, 11 (3), 125–140.
  22. Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B: Beta cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 2000, 49, 1325–1338.
  23. Bock T, Kyhnel A, Pakenberg B, Bushard K: The postnatal growth of the beta-cell mass in pig. J Endocrinol 2003, 179, 245–252.
  24. Samikannu B, Linn T: Effect of Dipeptidyl Peptidase-4 (CD26) on ßcell proliferation and apoptosis. G.G.L. International Giessen Graduate School for the Life Sciences 2008. www.uniklinikum-giessen.de/med3/poster/ publ_pdf/198.pdf.
  25. Matveyenko AV, Butler PC: Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab 2008, 10 (4), 23–31.
  26. Page BJ, du Toit DF, Muller CJ, Mattysen J, Lyners R: Autogenous Transplantation of a Duct Ligated Pancreas: A Functional and Histological Study. J Pancreas (Online) 2004, 5 (2), 71–80.
  27. Page BJ, du Toit DF, Muller CJ, Mattysen J, Lyners R: An immunocytochemical profile of the endocrine pancreas using an occlusive duct ligation model. J Pancreas (Online) 2000, 1, 191–203.
  28. Servitja JM, Ferrer J: Transcription networks controlling pancreatic development of beta cell function. Diabetology 2004, 47, 597–613.
  29. Jensen J: Gene regulatory in pancreatic development. Develop Dynam 2004, 229, 176–200.
  30. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF: Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 coding region. Nature Gen 1997b, 15, 106–110.
  31. Stoffers DA, Thomas MK, Habner JF: Homeodomain protein IDX-1: a master regulator of pancreas development and insulin gene expression. Trends Endocrinol Metabol 1997a, 8, 145–151.
  32. Habener JF, Kemp DM, Thomas MK: Minireview: transcriptional regulation in pancreatic development. Endocrinology 2005, 146 (3), 1025–1034.
  33. Qiu Y, Guo M, Huang S, Stein R: Insulin gene transcription is mediated by interaction between the p300 coactivator and Pdx-1, Beta2, and E47. Mol Cell Biol 2002, 22, 412–420.
  34. Gradwohl G, Dierich A, Lemeur M, Guillemot F: Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Nat Acad Sci USA 2000, 97, 1607–1611.
  35. Smith SB, Watada H, German MS: Neurogenin3 activates the islet differentiation program while repressing its own expression. Mol Endocrinol 2004, 18 (1), 142–149.
  36. Pontoglio MS, Reenan S, Roe M, Pugh W, Ostrega D, Doyen A, Pick AJ, Baldwin A, Velho G, Froguel P, Levisetti M, Bonner-Weir S, Bell GI, Yaniv M, Polonsky KS: Detective insulin secretion in hepatocyte nuclear factor1 alpha-deficient mice. J Clin Invest 1998, 101, 2215–2222.
  37. Jacquemin P, Durviaux SM, Jensen J, Godfraind C,Gradwohl G, Guillemot F, Madsen OD, Carmeliet P, Dewerchin M, Cohen D, Rousseau GG, Lemaigre FP: Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine celldifferentiation and controls expression of the proendocrine gene Ngn3. Mol Cell Biol 2000, 20, 4445–4454.
  38. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, Hrabe de Angelis M, Lendahl U, Edlund H: Notch signalling controls pancreatic cell differentiation. Nature 1999, 400, 877–881.
  39. Lammert E, Cleaver O, Melton D: Induction of pancreatic differentiation by signal from blood vessels. Science 2001, 294: 564–567.
  40. Jensen J, Heller RS, Funder-Nielsen T, Pedersen EE, Lindesell C, Weinmaster G, Madsen OD, Serup P: Independent development of pancreatic alphaand beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 2000a, 49, 163–176.
  41. Sussel L, Kalamaras J, Hartigan-O’connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, German MS: Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic cells. Development 1998, 125. 2213–2221.
  42. Dohrmann C, Gruss P, Lemaire L: 2000. Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech Develop 92, 47–54.
  43. Wang S, Jensen JN, Seymour PA, Hsu W, Dor Y, Sander M, Magnuson MA, Serup P, Gu G: Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc Nat Acad Sci USA 2009, 106 (24), 9715–9720.
  44. du Toit DF, Muller CJF, Page BJ, Louw J: Foetal rat pancreatic transplant: posttransplantation development of foetal pancreatic isoand allografts and suppression of rejection with mycophenolate mofetil (MFM) and cyclosporine based immunosuppression. Microsc Res Techniq 1998, 43, 347–355.
  45. du Toit DF, Longo-Mbenza B, Page BJ, Tchokonte-Nana V: Gene expression profile versus morphological changes in PDL pancreas: A chronobiological study on the remodeling of Beta cells in the rats’ pancreas. 2010. http:// www.isletsociety.org/abstract_files/217/Islet%20Meeting%20abstract2010.pdf
  46. Tchokonte-Nana V, Page BJ, du Toit DF, Longo-Mbenza B: Inter-relationship between insulin Pdx1, Ngn3, NeuroD, Pax6 and caspace3 gene expression in PDL rats: Induction of Beta cells neogenesis? 2010. http://www. wsu.ac.za/images/resources/programme.pdf
  47. Michalopoulos GK: Liver regeneration. J Cell Physiol 2007, 213, 286–300.