Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2010, vol. 19, nr 6, November-December, p. 771–776

Publication type: review article

Language: English

Wheelchair Development from the Perspective of Physical Therapists and Biomedical Engineers

Rozwój wózków dla niepełnosprawnych z punktów widzenia fizjoterapeutów i inżynierów biomedycznych

Emilia Mikołajewska1,, Dariusz Mikołajewski2,

1 Rehabilitation Clinic, Military Clinical Hospital No. 10 and Polyclinic, Bydgoszcz, Poland

2 Division of Applied Informatics, Department of Physics, Astronomy and Applied Informatics, Nicolaus Copernicus University in Toruń, Poland

Abstract

Wheelchairs are basic equipment for many disabled people, providing them with independent mobility – usually their primary means of mobility. The purpose of this paper is to appraise them from the common point of view of physical therapists and biomedical engineers working on the development of wheelchairs. The paper expands on the concept of “the disabled person’s integrated environment” and, as a part of it, “the disabled person’s integrated IT environment”. The premise is that this will improve physical therapists’ understanding of wheelchair development, and enhance their ability to improve their patients’ quality of life and functional possibilities (Adv Clin Med 2010, 19, 6, 771–776).

Streszczenie

Wózek jest podstawowym elementem zaopatrzenia rehabilitacyjnego dla wielu osób niepełnosprawnych. Zapewnia mobilność, zwykle jako podstawowy środek transportu. Celem niniejszej pracy jest omówienie wspólnego punktu widzenia fizjoterapeutów i inżynierów biomedycznych na kierunki rozwoju wózków dla niepełnosprawnych. Szczególny nacisk został położony na koncepcję „zintegrowanego otoczenia osoby niepełnosprawnej” i jego części, jaką jest „zintegrowane środowisko teleinformatyczne osoby niepełnosprawnej”. Przyniesie to fizjoterapeutom lepsze zrozumienie kierunków rozwoju wózków dla niepełnosprawnych oraz da sposobność ich przewidywania i kształtowania. Pomoże również podwyższyć jakość życia oraz możliwości funkcjonalne ich pacjentów (Adv Clin Med 2010, 19, 6, 771–776).

Key words

rehabilitation, biomedical engineering, rehabilitative enginnering, wheelchair

Słowa kluczowe

rehabilitacja, inżynieria biomedyczna, inżynieria rehabilitacyjna, wózek dla niepełnosprawnych

References (26)

  1. Mikołajewska E: Osoba ciężko chora lub niepełnosprawna w domu (Polish only). Wydawnictwo Lekarskie PZWL, Warszawa 2008.
  2. Mikołajewska E: Neurorehabilitacja. Zaopatrzenie ortopedyczne (Polish only). Wydawnictwo Lekarskie PZWL, Warszawa 2008.
  3. Hunt PC, Boninger ML, Cooper RA: Demographic and socioeconomic factors associated with disparity in wheelchair customizability among people with traumatic spinal cord injury. Arch Phys Med Rehabil 2004, 85(11), 1859–1864.
  4. Simpson RC, LoPresti EF, Cooper RA: How many people would benefit from a smart wheelchair? J Rehabil Res Dev 2008, 45(1), 53–71.
  5. Dieruf K, Ewer L, Boninger D: The natural-fit handrim: factors related to improvement in symptoms and function in wheelchair users. J Spinal Cord Med 2008, 31(5), 578–585.
  6. Cooper RA, Boninger ML, Spaeth DM et al.: Engineering better wheelchairs to enhance community participation. IEEE Trans Neural Syst Rehabil Eng 2006, 14(4), 438–455.
  7. Cooper RA, Cooper R, Boninger ML: Trends and issues in wheelchair technologies. Assist Technol 2008, 20(2), 61–72.
  8. Cooper RA, Dicianno BE, Brewer B et al.: A perspective on intelligent devices and environments in medical rehabilitation. Med Eng Phys 2008, 30(10), 1387–1398.
  9. Edlich RF, Nelson KP, Foley ML et al.: Technological advances in powered wheelchairs. J Long Term Eff Med Implants 2004, 14(2), 107–130.
  10. Hobson DA: Reflections on rehabilitation engineering history: are there lessons to be learned? J Rehabil Res Dev 2002, 39(6 Suppl), 17–22.
  11. Simpson R, Lopresti E, Hayashi S et al.: The smart wheelchair component system. J Rehabil Res Dev 2004, 41(3B), 429–442.
  12. Simpson RC: Smart wheelchairs: A literature review. J Rehabil Res Dev 2005, 42(4), 423–436.
  13. Ceres R, Pons JL, Calderón L et al.: A robotic vehicle for disabled children. Providing assisted mobility with the PALMA project. IEEE Eng Med Biol Mag 2005, 24(6), 55–63.
  14. Galindo C, Gonzalez J, Fernández-Madrigal JA: Control architecture for human-robot integration: application to a robotic wheelchair. IEEE Trans Syst Man Cybern B Cybern 2006, 36(5), 1053–1067.
  15. Cincotti F, Mattia D, Aloise F et al.: Non-invasive brain-computer interface system: towards its application as assistive technology. Brain Res Bull 2008, 75(6), 796–803.
  16. Spenko M, Yu H, Dubowsky S: Robotic personal aids for mobility and monitoring for the elderly. IEEE Trans Neural Syst Rehabil Eng 2006, 14(3), 344–351.
  17. McClure LA, Boninger ML, Oyster ML et al.: Wheelchair repairs, breakdown, and adverse consequences for people with traumatic spinal cord injury. Arch Phys Med Rehabil 2009, 90(12), 2034–2038.
  18. Wada M: Research and development of electric vehicles for clean transportation. J Environ Sci 2009, 21(6), 745–749.
  19. Van der Woude LH, de Groot S, Janssen TW: Manual wheelchairs: Research and innovation in rehabilitation, sports, daily life and health. Med Eng Phys 2006, 28(9), 905–915.
  20. Stefanov DH, Bien Z, Bang WC: The smart house for older persons and persons with physical disabilities: structure, technology arrangements, and perspectives. IEEE Trans Neural Syst Rehabil Eng 2004, 12(2), 228–250.
  21. Chan M, Estève D, Escriba C et al.: A review of smart homes – present state and future challenges. Comput Methods Programs Biomed 2008, 91(1), 55–81.
  22. Pearlman J, Cooper R, Chhabra HS et al.: Design, development and testing of a low-cost electric powered wheelchair for India. Disabil Rehabil Assist Technol 2009, 4(1), 42–57.
  23. Allin S, Eckel E, Markham H et al.: Recent trends in the development and evaluation of assistive robotic manipulation devices. Phys Med Rehabil Clin N Am 2010, 21(1), 59–77.
  24. Ohnabe H: Current trends in rehabilitation engineering in Japan. Assist Technol 2006, 18(2), 220–232.
  25. Koch S, Marschollek M, Wolf KH et al.: On health-enabling and ambient-assistive technologies. What has been achieved and where do we have to go? Methods Inf Med 2009, 48(1), 29–37.
  26. Siriwardena AN: Current state and future possibilities for ambient intelligence to support improvements in the quality of health and social care. Qual Prim Care 2009, 17(6), 373–375.