Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2010, vol. 19, nr 6, November-December, p. 685–690

Publication type: original article

Language: English

Biofilm Detection on the Surface of Hernia Mesh Implants

Wykrywanie biofilmu na powierzchni siatek przepuklinowych

Adrian Reśliński1,, Agnieszka Mikucka2,, Jakub Szmytkowski1,, Katarzyna Głowacka3,, Wojciech Szczęsny1,, Eugenia Gospodarek2,, Stanisław Dąbrowiecki1,

1 Department of General and Endocrine Surgery, Nicolaus Copernicus University of Torun, Collegium Medicum in Bydgoszcz, Poland

2 Department of Microbiology, Nicolaus Copernicus University of Torun, Collegium Medicum in Bydgoszcz, Poland

3 Department of Plant Physiology and Biotechnology, Warmia-Mazury University, Olsztyn, Poland

Abstract

Background. One serious complication of tension-free mesh hernioplasty is deep surgical site infection (SSI) involving the implant (mesh infection). As evidenced by in vitro studies, bacterial colonization of a synthetic implant may lead to the development of a biofilm on its surface, which is a serious therapeutic problem.
Objectives. The goal of this study was to evaluate the usefulness of a biofilm detection method based on 2,3,5-triphenyltetrazolium chloride (TTC) for screening for the presence of bacterial biofilm on the surface of biomaterials utilized in hernia surgery.
Material and Methods. The study group included samples of 12 synthetic implants harvested from 12 patients treated for deep SSIs after abdominal and inguinal hernia repair. The presence of biofilm was evaluated using the TTC reduction method, scanning electron microscopy and a quantitative method.
Results. Bacterial biofilm was found on the surfaces of all of the implants. The presence of a biofilm detected by TTC reduction was confirmed in each case by scanning electron microscopy and a quantitative method. The quantitative analysis yielded between 3.25 × 105 and 2.50 × 108 CFU/ml in the biofilm present on individual biomaterial samples. Conclusion. The TTC reduction method is useful for initial screening for the presence of a bacterial biofilm on the surface of implants utilized in hernia surgery.

Streszczenie

Wprowadzenie. Groźnym powikłaniem plastyki przepukliny z wszczepieniem biomateriału jest głębokie zakażenie miejsca operowanego (z.m.o.) obejmujące implantat. Konsekwencją bakteryjnej kolonizacji biomateriału jest powstanie biofilmu na jego powierzchni, co jest istotnym problemem terapeutycznym.
Cel pracy. Ocena przydatności metody redukcji chlorku 2,3,5-trójfenylotetrazoliowego (TTC) do wstępnej oceny występowania biofilmu bakteryjnego na powierzchni biomateriałów stosowanych w chirurgii przepuklin.
Materiał i metody. Badaniem objęto fragmenty 12 implantatów pochodzących od 12 pacjentów po plastyce przepuklin brzusznych i pachwinowych, leczonych z powodu głębokiego z.m.o. Obecność biofilmu na powierzchni usuniętych biomateriałów badano metodą redukcji TTC, z użyciem skaningowego mikroskopu elektronowego oraz metodą ilościową.
Wyniki. Biofilm bakteryjny stwierdzono na powierzchni wszystkich badanych implantatów. Obecność biofilmu wykrytego za pomocą metody opartej na redukcji soli tetrazoliowych w każdym przypadku potwierdzono w badaniu z użyciem skaningowego mikroskopu elektronowego i metody ilościowej. W badaniu ilościowym stwierdzono od 3,25 × 105 i 2,50 × 108 j.t.k./ml w biofilmie obecnym na jednej próbce biomateriału.
Wnioski. Metoda redukcji TTC jest przydatna do wstępnej oceny występowania biofilmu bakteryjnego na powierzchni implantatów stosowanych w chirurgii przepuklin.

Key words

hernia, surgical mesh, biofilm, TTC

Słowa kluczowe

przepuklina, siatka chirurgiczna, biofilm, TTC

References (28)

  1. Jezupors A, Mihelsons M: The analysis of infection after polypropylene mesh repair of abdominal wall hernia. World J Sur 2006, 30, 2270–2278.
  2. Leber GE, Garb JL, Alexander AI, Reed WP: Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg 1998, 133, 378–382.
  3. Andersson B, Hallen M, Leveau P, Bergenfelz A, Westerdahl J: Laparoscopic extraperitoneal inguinal hernia repair versus open mesh repair: a prospective randomized controlled trial. Surgery 2003, 133, 464–472.
  4. Lal P, Kajla RK, Chander J, Saha R, Ramteke VK: Randomized controlled study of laparoscopic total extraperitoneal vs. open Lichtenstein inguinal hernia repair. Surg Endosc 2003, 17, 850–856.
  5. Hamy A, Pessaux P, Mucci-Hennekinne S, Radriamananjo S, Regenet N, Arnaud JP: Surgical treatment of large incisional hernias by an intraperitoneal Dacron mesh and aponeurotic graft. J Am Coll Surg 2003, 196, 531–534.
  6. Petersen S, Henke G, Freitag M, Faulhaber A, Ludwig K: Deep prosthesis infection in incisional hernia repair: predictive factors and clinical outcome. Eur J Surg 2001, 167, 453–457.
  7. Morrison JE, Jacobs VR: Laparoscopic preperitoneal inguinal hernia repair using performed polyester mesh without fixation: prospective study with 1-year follow-up results in a rural setting. Surg Laparosc Endosc Percutan Tech 2008, 18, 33–39.
  8. Rosen MJ: Polyester-based mesh for ventral hernia repair: is it safe? Am J Surg 2009, 197, 353–359.
  9. Bueno Lledó J, Sosa Quesada Y, Gómez I, Gavara I, Vaqué Urbaneja J, Carbonell Tatay F, Bonafé Diana S, García Pastor P, Baquero Valdelomar R, Mir Pallardó J: Prosthetic infection after hernioplasty. Five years experience. Cir Esp 2009, 85, 158–164.
  10. Varghese TK, Denham DW, Dawes LG, Murayama KM, Prystowsky JB, Joehl RJ: Laparoscopic ventral hernia repair: an initial institutional experience. J Surg Res 2002, 105, 115–118.
  11. Heniford BT, Park A, Ramshaw BJ, Voeller G: Laparoscopic ventral and incisional hernia repair in 407 patients. J Am Coll Surg 2000, 190, 645–650.
  12. Engelsman AF, van der Mei HC, Francis KP, Busscher HJ, Ploeg RJ: Morphological aspects of surgical meshes as a risk factor for bacterial colonization. Br J Surg 2008, 95, 1051–1059.
  13. Reśliński A, Mikucka A, Szczęsny W, Szmytkowski J, Gospodarek E, Dąbrowiecki S: In vivo detection of biofilm on the surface of a surgical mesh implant – a case report. Chir Pol 2008, 3–4, 181–188.
  14. Bryers JD: Medical biofilms. Biotechnol Bioeng 2008, 100, 1–18.
  15. Saygun O, Agalar C, Aydinuraz K, Agalar F, Dephan C, Saygun M, Ceken S, Akkus A, Denkbas EB: Gold and gold-palladium coated polypropylene grafts in a Staphylococcus epidermidis wound infection model. J Surg Res 2006, 131, 73–79.
  16. Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori G: CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol 1992, 13, 606–608.
  17. Gallimore B, Gagnon RF, Subang R, Richards GK: Natural history of chronic Staphylococcus epidermidis foreign body infection in a mouse model. J Infect Dis 1991, 164, 1220–1223.
  18. Robinson TN, Clarke JH, Schoen J, Walsh MD: Major mesh-related complications following hernia repair. Events reported to the Food and Drug Administration. Surg Endosc 2005, 19, 1556–1560.
  19. Rios A, Rodriguez JM, Munitiz V, Alcatraz P, Perez Flores D, Parrilla P: Antibiotic prophylaxis in incisional hernia repair using a prosthesis. Hernia 2001, 5, 148–152.
  20. Taylor SG, O’Dwyer PJ: Chronic groin sepsis following tension-free inguinal hernioplasty. Br J Surg 1999, 86, 562–566.
  21. Sohail MR, Smilack JD: Hernia repair mesh-associated Mycobacterium goodii infection. J Clin Microbiol 2004, 42, 2858–2860.
  22. Nolla-Salas J, Torres-Rodriguez JM, Grau S, Isbert F, Torrella T, Riveiro M, Sitges-Serra A: Successful treatment with liposomal amphotericin B of an intraabdominal abscess due to Candida norvegensis associated with a Gore-Tex mesh infection. Scand J Infect Dis 2000, 32, 560–562.
  23. Engelsman AF, van Dam GM, van der Mei HC, Ploeg RJ: In vivo evaluation of bacterial infection involving morphologically different surgical meshes. Ann Surg 2010, 251, 133–137.
  24. Bellón JM, N G-Honduvilla, Jurado F, G-Carranza A, Buján J: In vitro interaction of bacteria with polypropylene/ ePTFE prostheses. Biomaterials 2001, 22, 2021–2024.
  25. Umemoto K: Reduction mechanism of 2,3,5-triphenyltetrazolium chloride and 1,3,5-triphenylformazan. Bull Chem Soc Jpn 1985, 58, 2051–2055.
  26. Praveen-Kumar, Tarafdar JC: 2,3,5-triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biol Fertil Soils 2003, 38, 186–189.
  27. Jałoza D, Juda M, Malm A, Urban M, Bar K: The qualitative and quantitative detection of biofilm formation in vitro on the biomaterials. Sepsis 2009, 2, 143–146.
  28. Rasnake MS, Dooley DP: Culture-negative surgical site infections. Surg Infect 2006, 7, 555–565.