Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2010, vol. 19, nr 6, November-December, p. 669–677

Publication type: original article

Language: English

The Sensitivity Level of Salmonella Enterica ESBL+ Transconjugants to Normal Human Serum Correlated with OMP Band Patterns Obtained by SDS-PAGE

Poziom wrażliwości transkoniugantów Salmonella enterica ESBL+ na działanie normalnej surowicy ludzkiej w korelacji z profilami OMP uzyskanymi metodą SDS-PAGE

Jolanta Sarowska1,, Gabriela Bugla-Płoskońska2,, Bożena Futoma-Kołoch2,, Zuzanna Drulis-Kawa3,

1 Department of Biology and Medical Parasitology, Wroclaw Medical University, Wrocław, Poland

2 Institute of Genetics and Microbiology, University of Wroclaw, Wrocław, Poland

3 Department of Pathogen Biology and immunology, University of Wroclaw, Wrocław, Poland

Abstract

Objectives. The aim of the study was to assess the susceptibility of Salmonella strains to the bactericidal activity of normal human serum (NHS) and to analyze the outer membrane protein (OMP) profiles.
Material and Methods. The clinical strain Klebsiella pneumoniae 20 and six Salmonella enterica strains – S. Enteritidis 518, S. Typhimurium 244 and S. Hadar 55 and their ESBL+ transconjugants S. Enteritidis 518/20, S. Typhimurium 244/20 and S. Hadar 55/20, obtained with K. pneumoniae 20 as the donor of ESBL plasmid were used. The bactericidal activity of NHS was determined as described by Jankowski et al. Isolation of the OMPs was performed according to the procedure described by Murphy and Bartos. Discontinuous sodium dodecyl sulphate (SDS) gel electrophoresis was carried out as described by Laemmli.
Results. This study examined the susceptibility of Salmonella recipient strains and their ESBL+ transconjugants belonging to three serovars – Enteritidis, Typhimurium and Hadar – to NHS. It was shown that the recipient strains (S. Enteritidis 518, S. Typhimurium 244, and S. Hadar 55) and the ESBL conjugative plasmid donor strain (K. pneumoniae 20) were resistant to the bactericidal action of NHS, whereas three Salmonella transconjugants identified as ESBL producers (S. Enteritidis 518/20, S. Typhimurium 244/20 and S. Hadar 55/20) demonstrated high sensitivity to serum. SDS-PAGE gel analysis showed that the parental strains and transconjugants exhibited different outer membrane protein patterns. The observed changes included the presence or absence of particular proteins.
Conclusion. It seems that the acquisition of new plasmids may have unfavorable consequences for pathogenic bacteria and increase their susceptibility to serum activity.

Streszczenie

Cel pracy. Określenie podatności szczepów Salmonella na bakteriobójcze działanie normalnej surowicy ludzkiej (NHS) i analiza profili białek błony zewnętrznej (OMP) badanych szczepów.
Materiał i metody. W badaniach wykorzystano kliniczny szczep Klebsiella pneumoniae 20 oraz sześć izolatów Salmonella enterica: S. Enteritidis 518, S. Typhimurium 244, S. Hadar 55, a także ich ESBL+ transkoniuganty: S. Enteritidis 518/20, S. Typhimurium 244/20 i S. Hadar 55/20, otrzymane z użyciemu szczepu K. pneumoniae 20, jako dawcy plazmidu typu ESBL. Bakteriobójczą aktywność NHS oceniano metodą opisaną przez Jankowskiego et al. Izolację białek OMP przeprowadzono zgodnie z procedurą opisaną przez Murphy’ego i Bartosa. Elektroforezę białek na żelu poliakrylamidowym w obecności SDS wykonano w układzie Laemmli’ego.
Wyniki. W badaniach określono wrażliwość na działanie NHS wyjściowych szczepów biorców Salmonella oraz ich ESBL+ transkoniugantów należących do trzech serowarów: Enteritidis, Typhimurium i Hadar. Wykazano, że zarówno szczepy biorców (S. Enteritidis 518, S. Typhimurium 244, S. Hadar 55), jak i szczep dawcy plazmidu typu ESBL (K. pneumoniae 20) były oporne na bakteriobójcze działanie NHS, a trzy uzyskane transkoniuganty ESBL+ Salmonella (S. Enteritidis 518/20, S. Typhimurium 244/20, S. Hadar 55/20) okazały się bardzo wrażliwe na działanie surowicy. Rozdział SDS-PAGE wykazał różnice na poziomie OMP między szczepami wyjściowymi Salmonella, a ich ESBL+ transkoniugantami. Obserwowane zmiany polegały na obecności lub braku poszczególnych białek. Wniosek. Prawdopodobnie pozyskanie nowego plazmidu przez komórki bakteryjne wpłynęło na niekorzystny dla tych patogenów wzrost podatności na aktywność surowicy.

Key words

Salmonella, NHS, OMP

Słowa kluczowe

Salmonella, NHS, OMP

References (40)

  1. Threlfall E: Salmonella. [In:] Microbiology and Microbial Infections. Ed. Boriello S, ASM Press, Washington 2005, 10th ed, 54, 1398–1427.
  2. Sarowska J, Drulis-Kawa Z, Korzekwa K, Lewczyk E, Jankowski S, Doroszkiewicz W: The occurrence of acute diarrhoeas induced by rotaviruses and Salmonella strains in children hospitalised in the Lower Silesian J. Korczak Paediatrics Centre in Wroclaw. Adv Clin Exp Med 2005, 14, 759–763.
  3. Threlfall E: Antimicrobial drug resistance in Salmonella: problems and perspectives in foodand water-borne infections. FEMS Microbiol Rev 2002, 26, 141–148.
  4. Lazinska B, Rokosz A, Sawicka-Grzelak A, Luczak M: Strains of genus Salmonella isolated from extraintestinal infections. Med Dosw Mikrobiol 2005, 57, 287–294.
  5. Diez-Dorado R, Tagarro-Garcia A, Baquero F: Non-typhoid Salmonella bacteriemia. An Ped (Barc) 2004, 60, 344–348.
  6. Saps M, Pensabene L, Di Martino L, Staiano A, Wechsler J, Zheng X, Di Lorenzo C: Post-infectious functional gastrointestinal disorders in children. J Pediatr 2008, 152, 812–816.
  7. Miriagou V, Tassios P, Legakis N, Tzouvelekis L: Expanded-spectrum cephalosporin resistance in non-typhoid Salmonella. Int J Antimicrob Agents 2004, 23, 547–555.
  8. Franiczek R, Dolna I, Krzyzanowska B, Szufnarowski K, Kowalska-Krochmal B: Conjugative transfer of multiresistance plasmids from ESBL-positive Escherichia coli and Klebsiella spp. clinical isolates to Escherichia coli strain K12 C600. Adv Clin Exp Med 2007, 16, 239–247.
  9. Rasheed JK, Anderson GJ, Yigit H, Queenan AM, Doménech-Sánchez A, Swenson JM, Biddle JW, Ferraro MJ, Jacoby GA, Tenover FC: Characterization of the Extended-Spectrum β-Lactamase reference Strain, Klebsiella pneumoniae K6 (ATCC 700 603), which produces the novel enzyme SHV-18. Antimicrob Agents Chemother 2000, 44, 2382–2388.
  10. Sarowska J, Drulis-Kawa Z, Guz K, Jankowski S, Wojnicz D: Conjugative transfer of plasmid encoding extenderspectrum beta-lactamase to recipient Salmonella strains. Adv Clin Exp Med 2009, 18, 63–70.
  11. Jankowski S, Rowiński S, Cisowska A, Gamian A: The sensitivity of Hafnia alvei strains to the bactericidal effect of serum. FEMS Immunol Med Microbiol 1996, 13, 59–64.
  12. Futoma-Kołoch B, Bugla-Płoskońska G, Doroszkiewicz W, Kaca W: Survival of Proteus mirabilis O3 (S1959), O9 and O18 strains in Normal Human Serum (NHS) correlates with the diversity of their outer membrane proteins (OMPs). Pol J Microbiol 2006, 55, 153–156.
  13. Bugla-Płoskońska G, Futoma-Kołoch B, Skwara A, Doroszkiewicz W: Use of zwitterionic type of detergent in isolation of Escherichia coli O56 outer membrane proteins improves their two-dimensional electrophoresis (2-DE). Pol J Microbiol 2009, 58, 205–209.
  14. Bugla-Płoskońska G, Korzeniowska-Kowal A, Guz-Regner K: Reptiles as a source of Salmonella O48 – clinically important bacteria for children: the relationship between resistance to normal cord serum and outer membrane protein patterns. Microb Ecol 2010.
  15. Shaw MM, Riederer BM: Sample preparation for two-dimensional gel electrophoresis. Current Advancements in the Methodology. GIT Laby J 2006, 6, 302–303.
  16. Murphy T, Bartos LC: Surface-exposed and antigenically conserved determinants of outer membrane proteins of Branhamella catarralis. Infect Immun 1989, 10, 2938.
  17. Rockwood D, Wilson MT, Darley-Usmar VM: Isolation and characteristic of intact mitochondria. pp. 1–16. In: Mitochondria: a practical approach. Eds.: Darley-Usmar VM, Rickwood D, Wilson MT. IRL Press, Oxford, 1987.
  18. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72, 248–254.
  19. Luche S, Santoni V, Rabilloud T: Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 2003, 3, 249–253.
  20. Futoma-Kołoch B, Bugla-Płoskońska G, Doroszkiewicz W: Isolation of outer membrane proteins (OMP) from Salmonella cells using zwitterionic detergent and their separation by two-dimensional electrophoresis (2-DE). Pol J Microbiol 2009, 58, 363–366.
  21. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 15, 680–685.
  22. Kustos I, Kocsis B, Kilar F: Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Rev Proteomics 2007, 4, 91–106.
  23. Zollinger WD, Boslego J, Froholm LO, Ray JS, Moran EE, Brandt BL: Human bactericidal antibody response to meningococcal outer membrane protein vaccines. Ant Leeuwenhoek 1987, 53, 403–411.
  24. Merino S, Nogueras M, Aquilair A, Rubires X, Alberti S, Benedi VJ, Tomas JM: Activation the complement classical pathway (C1q binding) by mesophilic Aeromonas hydrophila outer membrane protein. Infect Immun 1998, 66, 3825–3831.
  25. Alberti S, Marquez G, Camprubi S, Merino T, Vivanco F, Benedi J: C1q binding and activation of the complement classical pathway by Klebsiella pneumoniae outer membrane proteins. Infect Immun 1993, 61, 852–860.
  26. White CD, Leduc I, Olsen B, Jeter C, Harris C, Elkins C: Haemophilus ducreyi outer membrane determinants, including DsrA, define two clonal populations. Infect Immun 2005, 4, 2387–2399.
  27. Attia AS, Lafontaine ER, Latimer JL, Aebi C, Syrogiannopoulos GA, Hansen EJ: The UspA2 protein of Moraxella catarrhalis is directly involved in the expression of serum resistance. Infect Immun 2005, 73, 2400–2410.
  28. Bugla G, Korzeniowska-Kowal A, Gamian A, Doroszkiewicz W: Bactericidal activity of serum against Salmonella O48 serovars. Int. J Antimicrob Agents 2004, 24, 604.
  29. Mielnik G, Gamian A, Doroszkiewicz W: Bactericidal activity of normal cord serum (NCS) against Gram-negative rods with sialic acid-containing lipopolysaccharides (LPS). FEMS Immunol Med Microbiol 2001, 31, 169–173
  30. Würzner R: Evasion of pathogens by avoiding recognition or eradication by complement, in part via molecular mimicry. Mol Immunol 1999, 36, 249–260.
  31. Seelen MA, Roos A, Wieslander J, Mollnes TE, Sjöholm AG, Wurzner R, Loos M, Tedesco F, Sim RB, Garred P, Alexopoulos E, Turner MW, Daha MR: Functional analysis of the classical, alternative, and MBL pathways of the complement system: standardization and validation of a simple ELISA. J Immunol Methods 2005, 1–2, 187–198.
  32. Arlaud GJ, Barlow PN, Gaboriaud C, Gros P, Narayana SV: Deciphering complement mechanisms: the contributions of structural biology. Mol Immunol 2007, 44, 3809–3822.
  33. Harmat V, Gál P, Kardos J, Szilágyi K, Ambrus G, Végh B, Náray-Szabó G, Závodszky P: The structure of MBL-associated serine protease-2 reveals that identical substrate specificities of C1s and MASP-2 are realized through different sets of enzyme-substrate interaction. J Mol Biol 2004, 342, 1533–1546.
  34. Jankowski S, Cisowska A: Plasmids R577 and R785 decrease the resistance of Escherichia coli K12 strain W1485 to bactericidal action of normal serum. J Appl Genet 1998, 39, 211–216.
  35. Cirillo DM, Heffernan EJ, Wu L, Harwood J, Fierer J, Guiney DG: Identification of a domain in Rck, a product of the Salmonella typhimurium virulence plasmid, required for both serum resistance and cell invasion. Infect Immun 1996, 64, 2019–2023.
  36. Chaffer M, Heller ED, Schwartsburd B: Relationship between resistance to complement, virulence and outer membrane protein patterns in pathogenic Escherichia coli O2 isolates. Vet Microbiol 1999, 64, 323–332.
  37. Lin J, Huang S, Zhang Q: Outer membrane proteins: key players for bacterial adaptation in host niches. Microb Infect 2002, 4, 325–331.
  38. Galdiero F, Tufano MA, Sommese L, Folgore A, Tedesco F: Activation of the complement system by porins extracted from Salmonella typhimurium. Infect Immun 1984, 46, 559–563.
  39. Negm RS, Pistole TG: Macrophages recognize and adhere to an OmpD-like protein of Salmonella typhimurium. FEMS Immunol Med Microbiol 1998, 20, 191–199.
  40. Bugla-Płoskońska G, Kiersnowski A, Futoma-Kołoch B, Doroszkiewicz W: Killing of Gram-negative bacteria with normal human serum and normal bovine serum: use of lysozyme and complement protein in the death of Salmonella strains O48. Microb Ecol 2009, 58, 276–289.