Advances in Clinical and Experimental Medicine
2010, vol. 19, nr 4, July-August, p. 481–487
Publication type: original article
Language: English
Effect of Polyunsaturated Fatty Acids on Doxorubicin Cytotoxicity in Glioma Cells in vitro
Wpływ wielonienasyconych kwasów tłuszczowych na cytotoksyczność doksorubicyny w komórkach glejaków in vitro
1 Department of Biopharmacy, Medical University of Silesia, Sosnowiec, Poland
2 Department of Cell Biology, Medical University of Silesia, Sosnowiec, Poland
Abstract
Background. In normal and tumour cells, polyunsaturated fatty acids (PUFAs) act as intracellular second messengers, which play a role in signalling, proliferation and cell death. PUFAs have selective tumouricidal action and may alter sensitivity of tumour cells to radiation and chemotherapy.
Objectives. Investigation of the ability of exogenous linoleic acid (LA, 18:2 n-6), α-linolenic acid (ALA, 18:3 n-3), arachidonic acid (AA, 20:4 n-6), eicosapentaenoic acid (EPA, 20:5 n-3), and docosahexaenoic acid (DHA, 22:6 n-3) to modulate sensitivity of human glioma cells to doxorubicin.
Material and Methods. The influence of PUFAs (0–100 μM) on the viability of human foreskin fibroblasts (HFF-1), human glioblastoma (SNB-19), and human gliomas (8-MG-BA, 42-MG-BA) grown in the absence or presence of doxorubicin was estimated. Viability of the cells was measured after 72 hours of exposure by the WST-1 tetrazolium salt assay.
Results. DHA (25 μM) stimulated growth of fibroblasts, while LA (50 and 100 μM) and AA (100 μM) reduced their growth. Glioma cell growth was not stimulated by the tested fatty acids. EPA (100 μM) and DHA (100 μM) inhibited viability of 8-MG-BA and 42-MG-BA glioma cells. SNB-19 glioblastoma cells remained resistant to PUFAs. PUFAs did not modify growth of the fibroblasts exposed to doxorubicin. PUFAs (100 μM), in particular DHA, enhanced doxorubicin cytotoxicity in all glioma cell lines used. At lower concentrations, EPA (25 μM) and DHA (25 μM) decreased doxorubicin toxicity in SNB-19 cells. Similar effect was observed for ALA (25 μM) and AA (25 μM) in 8-MG-BA cells. Conclusion. To increase doxorubicin antitumour activity in glioma cell lines high concentrations of PUFAs are required. At low concentrations of PUFAs this activity can be diminished. These facts should be taken into consideration in therapy for patients with brain gliomas.
Streszczenie
Wprowadzenie. Zarówno w komórkach prawidłowych, jak i nowotworowych wielonienasycone kwasy tłuszczowe (w.n.k.t.) pełnią funkcję wewnątrzkomórkowych, drugorzędowych przekaźników sygnału w procesach proliferacji oraz śmierci komórki. W.n.k.t. wykazują selektywne działanie przeciwnowotworowe i mogą wpływać na wrażliwość komórek nowotworowych na naświetlanie i chemioterapię.
Cel pracy. Zbadanie zdolności egzogennych kwasów tłuszczowych: linolowego (LA, 18:2 n-6), α-linolenowego (ALA, 18:3 n-3), arachidonowego (AA, 20:4 n-6), eikozapentaenowego (EPA, 20:5 n-3) i dokozaheksaenowego (DHA, 20:6 n-3) do modulowania wrażliwości ludzkich komórek glejaków na doksorubicynę. Materiał i Metody. Do oznaczenia wpływu w.n.k.t. (0–100 μM) na przeżywalność ludzkich komórek fibroblastów napletka (HFF-1), glejaka wielopostaciowego (SNB-19), ludzkich glejaków (8-MG-BA, 42-MG-BA) hodowanych w nieobecności i obecności doksorubicyny zastosowano test WST-1. Przeżywalność komórek była mierzona po 72 godzinach ekspozycji.
Wyniki. DHA (25 μM) stymulował wzrost fibroblastów w przeciwieństwie do LA (50 i 100 μM) oraz AA (100 μM), które hamowały ich wzrost. Badane kwasy tłuszczowe nie stymulowały wzrostu komórek glejaków. EPA (100 μM) oraz DHA (100 μM) zmniejszały przeżywalność komórek glejaków linii 8-MG-BA i 42-MG-BA. Komórki glejaka wielopostaciowego SNB-19 nie wykazały wrażliwości na w.n.k.t. W.n.k.t. nie modyfikowały wzrostu fibroblastów eksponowanych na doksorubicynę. W.n.k.t. (100 μM), w szczególności DHA, zwiększały cytotoksyczność doksorubicyny wobec wszystkich testowanych linii glejaków. W mniejszych stężeniach EPA (25 μM) oraz DHA (25 μM) zmniejszały cytotoksyczność doksorubicyny w linii komórek SNB-19. Podobne działanie zaobserwowano w przypadku ALA (25 μM) i AA (25 μM) w komórkach 8-MG-BA.
Wnioski. Zwiększenie aktywności przeciwnowotworowej doksorubicyny wobec komórek linii glejaków wymaga zastosowania w.n.k.t. w dużych stężeniach. W małych stężeniach kwasy te mogą spowodować zmniejszenie przeciwnowotworowej aktywności doksorubicyny. Fakty te powinny być brane pod uwagę w leczeniu pacjentów z glejakami mózgu.
Key words
polyunsaturated fatty acids, doxorubicin, glioma cells
Słowa kluczowe
wielonienasycone kwasy tłuszczowe, doksorubicyna, komórki glejaków
References (27)
- Eynard AR: Potential of essential fatty acids as natural therapeutic products for human tumors. Nutrition 2003, 19, 386–387.
- Benatti P, Peluso G, Nicolai R, Calvani M: Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties. J Am Coll Nutr 2004, 23, 281–302.
- Das UN: Gamma-linolenic acid therapy of human glioma – a review of in vitro, in vivo, and clinical studies. Med Sci Monit 2007, 13, 119–131.
- Miyake JA, Benadiba M, Colquhoun A: Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis 2009, 8, 8.
- Das UN: Tumoricidal and anti-angiogenic actions of gamma-linolenic acid and its derivatives. Curr Pharm Biotechnol 2006, 7, 457–466.
- Vartak S, Robbins ME, Spector AA: Polyunsaturated fatty acids increase the sensitivity of 36B10 rat astrocytoma cells to radiation-induced cell kill. Lipids 1997, 32, 283–292.
- Rudra PK, Krokan HE: Cell specific enhancement of doxorubicin toxicity in human tumor cells by docosahexaenoic acid. Anticancer Res 2001, 21, 29–38.
- Das UN, Madhavi N, Sravan Kumar G, Padma M, Sangeetha P: Can tumor cell drug resistance be reversed by essential fatty acids and their metabolites? Prostaglandins Leukot Essent Fatty Acids 1998, 58, 39–54.
- Mahéo K, Vibet S, Steghens JP, Dartigeas C, Lehman M, Bougnoux P, Goré J: Differential sensitization of cancer cells to doxorubicin by DHA: A role for lipoperoxidation. Free Radic Biol Med 2005, 39, 742–751.
- Hansen-Petrik MB, McEntee MF, Johnson BT, Obukowicz G, Masferrer J, Zweifel B, Chiu CH, Whelan J: Selective inhibition of Δ-6 desaturase impedes intestinal tumorigenesis. Cancer Lett 2002, 175, 157–163.
- Berquin IM, Edwards IJ, Chen YQ: Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 2008, 269, 363–377.
- Youdim KA, Martin A, Joseph JA: Essential fatty acids and the brain: possible health implications. Int J Dev Neurosci 2000, 18, 383–399.
- Leaver HA, Wharton SB, Bell HS, Leaver-Yap IM, Whittle IR: Highly unsaturated fatty acid induced tumour regression in glioma pharmacodynamics and bioavailability of gamma linolenic acid in an implantation glioma model: effects on tumour biomass, apoptosis and neuronal tissue histology. Prostaglandins Leukot Essent Fatty Acids 2002, 67, 283–292.
- Leaver HA, Bell HS, Rizzo MT, Ironside JW, Gregor A, Wharton SB, Whittle IR: Antitumour and pro-apoptotic actions of highly unsaturated fatty acids in glioma. Prostaglandins Leukot Essent Fatty Acids 2002, 66, 19–29.
- Leaver HA, Williams JR, Smith C, Whittle IR: Intracellular oxidation by human glioma cell populations: effect of arachidonic acid. Prostaglandins Leukot Essent Fatty Acids 2004, 70, 449–53.
- Leonardi F, Attorri L, Benedetto RD, Biase AD, Sanchez M, Tregno FP, Nardini M, Salvati S: Docosahexaenoic acid supplementation induces dose and time dependent oxidative changes in C6 glioma cells. Free Radic Res 2007, 41, 748–756.
- Nasrollahzadeh J, Siassi F, Doosti M, Eshraghian MR, Shokri F, Modarressi MH, Mohammadi-Asl J, Abdi K, Nikmanesh A, Karimian SM: The influence of feeding linoleic, gamma-linolenic and docosahexaenoic acid rich oils on rat brain tumor fatty acids composition and fatty acid binding protein 7 mRNA expression. Lipids Health Dis 2008, 7, 45.
- Pardini RS: Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem Biol Interact 2006, 162, 89–105.
- Leonardi F, Attorri L, Di Benedetto R, Di Biase A, Sanchez M, Nardini M, Salvati S: Effect of arachidonic, eicosapentaenoic and docosahexaenoic acids on the oxidative status of C6 glioma cells. Free Radic Res 2005, 8, 865–874.
- Williams JR, Leaver HA, Ironside JW, Miller EP, Whittle IR, Gregor A: Apoptosis in human primary brain tumours: actions of arachidonic acid. Prostaglandins Leukot Essent Fatty Acids 1998, 58, 193–200.
- Kokoglu E, Tuter Y, Yazici Z, Sandikci KS, Sonmez H, Ulakoglu EZ, Ozyurt E: Profiles of the fatty acids in the plasma membrane of human brain tumors. Cancer Biochem Biophys 1998, 16, 301–312.
- Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, Berry D, Steward W, Dennison A: The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer 2009, 45, 2077–2086.
- Ramos KL, Colquhoun A: Protective role of glucose-6-phosphate dehydrogenase activity in the metabolic response of C6 rat glioma cells to polyunsaturated fatty acid exposure. Glia 2003, 43, 149–166.
- Chung FL, Pan J, Choudhury S, Roy R, Hu W, Tang MS: Formation of trans-4-hydroxy-2-nonenaland other enal-derived cyclic DNA adducts from omega-3 and omega-6 polyunsaturated fatty acids and their roles in DNA repair and human p53 gene mutation. Mutat Res 2003, 531, 25–36.
- Siddiqui RA, Harvey K, Stillwell W: Anticancer properties of oxidation products of docosahexaenoic acid. Chem Phys Lipids 2008, 153, 47–56.
- Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P: Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 2006, 53, 799–808.
- Ito K, Abe T, Tomita M, Morimoto A, Kohno K, Mori T, Ono M, Sugenoya A, Nishihira T, Kuwano M: Antiangiogenic activity of arachidonic acid metabolism inhibitors in angiogensis model systems involving human microvascular endothelial cells and neovascularization in mice. Int J Cancer 1993, 55, 660–666.