Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 1.736
5-Year Impact Factor – 2.135
Index Copernicus  – 168.52
MEiN – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2010, vol. 19, nr 3, May-June, p. 313–322

Publication type: original article

Language: English

Conjugative Transfer of Plasmid-Mediated CTX-M-Type β-Lactamases from Clinical Strains of Enterobacteriaceae to Salmonella enterica Serovars

Transfer koniugacyjny kodowanych plazmidowo β-laktamaz CTX-M ze szczepów klinicznych Enterobacteriaceae do serowarów Salmonella enterica

Roman Franiczek1,, Barbara Krzyżanowska1,, Izabela Dolna1,, Grażyna Mokracka-Latajka1,

1 Department of Microbiology, Wroclaw Medical University, Poland

Abstract

Objectives. The aim of the study was to evaluate the transfer frequency of plasmid-mediated extended-spectrum β-lactamases (ESBLs) from clinical isolates of Enterobacteriaceae to Salmonella enterica and Escherichia coli K12 C600 recipient strains. Moreover, the susceptibility to selected antibiotics and chemotherapeutics of the donor strains and transconjugants obtained in the mating experiments was estimated.
Material and Methods. Ten ESBL-positive clinical isolates, including Escherichia coli, Klebsiella pneumoniae, Citrobacter freundii, Enterobacter cloacae, and Serratia marcescens (two strains of each species) were used as donor strains. Salmonella enterica serovar Enteritidis (S. Enteritidis), S. Virchow, S. Hadar, and E. coli K12 C600 were used as recipient strains. ESBL production in donor strains and transconjugants was detected by the double disk synergy test (DDST). Transfer of ESBL-encoding plasmids was performed by a liquid conjugational method. The minimal inhibitory concentrations (MICs) of antibacterial drugs were determined by an agar dilution technique on Mueller-Hinton agar. The presence of the blaCTX-M gene in donor strains and transconjugants was determined by PCR.
Results. A total of 40 conjugation crosses between donor and recipient strains were performed. Transconjugants were obtained in twenty-seven (67.5%) of them. E. coli K12 C600 strain was found to be the best recipient. It acquired plasmid-mediated ESBL from all of the donor strains tested. Among Salmonella enterica recipients, S. Enteritidis and S. Infantis acquired ESBL-encoding genes from 9 and 7 donor strains respectively, whereas S. Hadar acquired this gene from a single donor strain only. The effectiveness of conjugational transfer ranged from 10–6 to 10–1 per donor cell. The donor strains and their transconjugants displayed resistance patterns typical of ESBL producers. They were uniformly resistant to cefotaxime and ceftriaxone but susceptible to carbapenems, tigecycline and oxyimino-β-lactams in combination with clavulanic acid. In addition, resistance to gentamicin, amikacin and co-trimoxazole was, in many cases, co-transferred with oxyimino-β-lactam resistance to recipients by means of conjugation. The MIC values of cefotaxime and ceftriaxone were higher than those of ceftazidime. PCR results revealed the presence of the blaCTX-M gene in all donor strains and their transconjugants.
Conclusion. The results of the study demonstrated the differences in conjugational acquisition of the blaCTX-M gene among the Salmonella enterica serovars studied. Of the S. enterica strains, Salmonella enterica serovar Enteritidis was found to be the best recipient of plasmid-mediated CTX-M-type β-lactamases.

Streszczenie

Cel pracy. Określenie częstości przekazywania plazmidowo kodowanych β-laktamaz o rozszerzonym spektrum substratowym (ESBL) z klinicznych szczepów Enterobacteriaceae do szczepów biorców Salmonella enterica i Escherichia coli K12 C600. Określono ponadto wrażliwość na wybrane antybiotyki i chemioterapeutyki szczepów dawców i transkoniugantów uzyskanych w krzyżówkach.
Materiał i metody. W badaniach zastosowano 10 izolatów klinicznych wytwarzających ESBL w charakterze dawców: Escherichia coli, Klebsiella pneumoniae, Citrobacter freundii, Enterobacter cloacae i Serratia marcescens (2 szczepy z każdego gatunku). Szczepy Salmonella enterica serowar Enteritidis (S. Enteritidis), S. Virchow, S. Hadar i E. coli K12 C600 użyto w charakterze biorców. ESBL wykrywano testem synergizmu dwóch krążków (DDST). Przekazywanie plazmidów kodujących ESBL przeprowadzono za pomocą metody koniugacji w podłożu płynnym. Minimalne stężenia hamujące (MIC) leków przeciwbakteryjnych oznaczono metodą seryjnych rozcieńczeń w podłożu agarowym Mueller-Hintona. Występowanie genu blaCTX-M w szczepach dawców i transkonjugantach oznaczono metodą PCR.
Wyniki. Ogółem wykonano 40 krzyżówek koniugacyjnych między szczepami dawców i biorców. Transkoniuganty otrzymano w 27 (67,5%) krzyżówkach. Najlepszym biorcą okazał się szczep E. coli K12, który nabył plazmidowo kodowane ESBL od wszystkich badanych szczepów dawców. Wśród biorców Salmonella enterica, serowary S. Enteritidis and S. Infantis nabyły geny kodujące ESBL odpowiednio od 9 and 7 szczepów dawców, a serowar S. Hadar nabył ten gen tylko od jednego szczepu donorowego. Skuteczność koniugacji wynosiła od 10–6 do 10–1 w przeliczeniu na komórkę dawcy. Szczepy dawców oraz ich transkoniuganty odznaczały się typowymi dla producentów ESBL wzorcami oporności. Były one oporne na cefotaksym i ceftriakson, wrażliwe natomiast na karbapenemy, tigecyklinę i oksyimino-β-laktamy skojarzone z kwasem klawulanowym. Ponadto, w wielu przypadkach oporność na gentamycynę, amikacynę i kotrimoksazol była przekazywana na drodze koniugacji wraz z opornością na oksyimino-β-laktamy. Wartości MIC dla cefotaksymu i ceftriaksonu były większe w porównaniu z wartościami MIC dla ceftazydymu. Wyniki badań PCR wykazały obecność genu blaCTX-M u wszystkich szczepów dawców oraz ich transkoniugantów.
Wnioski. Wyniki badań wykazały różnice w koniugacyjnym nabywaniu genu blaCTX-M wśród badanych serowarów Salmonella enterica. Spośród badanych szczepów S. enterica najlepszym biorcą plazmidowo kodowanych β-laktamaz CTX-M okazał się szczep Salmonella enterica serowar Enteritidis.

Key words

Salmonella, ESBL, CTX-M

Słowa kluczowe

Salmonella, ESBL, CTX-M

References (35)

  1. Parry CM: Antimicrobial drug resistance in Salmonella enterica. Curr Opin Infect Dis 2003, 16, 467–472.
  2. Galanis E, Lo Fo Wong DMA, Patrick ME, Binsztein N, Cieślik A, Chalermchaikit T, Aidra-Kane A, Ellis A, Angulo FJ, Wegener HC: Web-based surveillance and global Salmonella distribution, 2000–2002. Emerg Infect Dis 2004, 12, 381–388.
  3. Yen MH, Huang YC, Chiu CH, Lin TY: Duration of antimicrobial therapy for non-typhoid Salmonella bacteremia in healthy children. J Microb Immunol Infect 2002, 35, 94–98.
  4. Fey PD, Safranek TJ, Rupp ME, Dunne EF, Ribot ME, Iwen PC, Bradford PA, Angulo FJ, Hinrichs SH: Ceftriaxone-resistant Salmonella infection acquired by a child from cattle. N Engl J Med 2000, 342, 1242–1249.
  5. Hohmann EL: Nontyphoidal salmonellosis. Clin Infect Dis 2001, 32, 263–269.
  6. Koeck JL, Arlet G, Philippon A, Basmaciogullari S, Vu Thien H, Buisson Y, Cavallo JD: A plasmid-mediated CMY-2 β-lactamase from an Algerian clinical isolate of Salmonella senftenberg. FEMS Microbiol Lett 1997, 152, 255–260.
  7. Makanera A, Arlet G, Gautier V, Manai M: Molecular epidemiology and characterization of plasmid-encoded β-lactamases produced by Tunisian clinical isolates of Salmonella enterica serotype Mbandaka resistant to broadspectrum cephalosporins. J Clin Microbiol 2003, 41, 2940–2945.
  8. Miriagou V, Tassios PT, Legakis NJ, Tzouvelekis LS: Expanded-spectrum cephalosporins resistance in nontyphoid Salmonella. Int J Antimicrob Agents 2004, 23, 547–555.
  9. Vahaboglu H, Dodanli S, Eroglu C, Öztürk R, Soyletir G, Yildirim I, Avkan V: Characterization of multipleantibioticresistant Salmonella Typhimurium strains: molecular epidemiology of PER-1-producing isolates and evidence for nosocomial plasmid exchange by clone. J Clin Microbiol 1996, 34, 2942–2946.
  10. Tassios PT, Gazouli M, Tzelepi E, Milch H, Kozlova N, Sidorenko S, Legakis NJ, Tzouvelekis LS: Spread of Salmonella Typhimurium clone resistant to expanded-spectrum cephalosporins in three European countries. J Clin Microbiol 1999, 37, 3774–3777.
  11. Baraniak A, Sadowy E, Hryniewicz W, Gniadkowski M: Two different extended-spectrum beta-lactamases (ESBLs) in one of the first ESBL-producing salmonella isolates in Poland. J Clin Microbiol 2002, 40, 1095–1097.
  12. Su LH, Chiu CH, Chu C, Wang MH, Chia JH, Wu TL: In vivo acquisition of ceftriaxone resistance in Salmonella enterica serotype Anatum. Antimicrob Agents Chemother 2003, 47, 563–567.
  13. Liebana E, Batchelor M, Torres C, Briñas L, Lagos LA, Abdalhamid B, Hanson ND, Martinez-Urtaza J: Pediatric infection due to multiresistant Salmonella enterica serotype Infantis in Honduras. J Clin Microbiol 2004, 44, 4885–4888.
  14. Usha G, Chunderica M, Prashini M, Willem SA, Yusuf ES: Characterization of extended-spectrum β-lactamases in Salmonella spp. at a tertiary hospital in Durban, South Africa. Diagn Microbiol Infect Dis 2008, 62, 86–91.
  15. Livermore DM: β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995, 8, 557–584.
  16. Paterson DL, Bonomo RA: Extended-spectrum β-lactamases: a clinical update. Clin Microb Rev 2005, 18, 657–686.
  17. Jacoby GA, Medeiros AA: More extended-spectrum β-lactamases. Antimicrob Agents Chemother 1991, 35, 1697–1704.
  18. Franiczek R, Krzyżanowska B, Dolna I, Mokracka G, Szufnarowski K: Extended-spectrum β-lactamaseconferring transferable resistance to different antimicrobial agents in Enterobacteriaceae isolated from bloodstream infections. Folia Microbiol 2005, 50, 119–1124.
  19. Gray LD: Escherichia, Salmonella, Shigella and Yersinia. In: Manual of clinical microbiology. Eds.: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, Washington 1995, ASM Press., 450–456.
  20. Clinical and Laboratory Standard Institute: Performance Standards for Antimicrobial Susceptibility Testing. Wayne PA, USA 2006, 16th Informational Supplement, M100–S15.
  21. Jarlier V, Nicolas MH, Fournier G, Philippon A: Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988, 10, 867–878.
  22. Gniadkowski M, Schneider I, Pałucha A, Jungwirth R, Mikiewicz B, Bauernfeind A: Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaximehydrolyzing β-lactamase that is closely related to the CTX-M-1/MEN-1 enzyme. Antimicrob Agents Chemother 1998, 42, 827–832.
  23. Sarowska J, Drulis-Kawa Z, Guz K, Jankowski S, Wojnicz D: Conjugative transfer of plasmid encoding extendedspectrum beta-lactamase to recipient Salmonella strains. Adv Clin Exp Med 2009, 18, 63–70.
  24. Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A: β-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother 2002, 46, 3045–3049.
  25. Alobwede I, M’Zali FH, Livermore DM, Heritage J, Todd N, Hawkey PM: CTX-M extended-spectrum β-lactamase arrives in the UK. J Antimicrob Chemother 2003, 51, 470–471.
  26. Bonnet R: Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004, 48, 1–14.
  27. Izumyia H, Mori K, Higashide M, Tamura K, Takai N, Hirose K, Terajima J, Watanabe H: Identification of CTX-M-14 β-lactamase in Salmonella enterica serovar Enteritidis isolate from Japan. Antimicrob Agents Chemother 2005, 49, 2568–2570.
  28. Bahar G, Mert A, Catania MR, Koncan R, Benvenuti C, Mazzariol A: A strain of Salmonella enterica serovar Virchow isolated in Turkey and carrying a CTX-M-3 extended-spectrum β-lactamase. J Chemother 2006, 18, 307–310.
  29. Bertrand S, Weill FX, Cloeckeart A, Vrints M, Mairiaux E, Praud K, Dierick K, Wildemauve Ch, Godard C, Butaye P, Imberechts H, Grimont AD, Collard JM: Clonal emergence of extended-spectrum β-lactamase (CTXM2)-producing Salmonella enterica serovar Virchow isolates with reduced susceptibilities to ciprofloxacin among poultry and humans in Belgium and France (2000–2003). J Clin Microbiol 2006, 44, 2897–2903.
  30. Gierczyński R, Szych J, Rastawicki W, Jagielski M: The molecular characterization of the extended-spectrum beta-lactamase (ESBL) producing strain of Salmonella enterica serovar Mbandaka isolated in Poland. Acta Microbiol Pol 2003, 52, 183–190.
  31. Szych J, Gierczyński R, Wardak S, Cieślik A: The occurrence and characterization of oxyimino-β-lactams resistant strains among Salmonella enterica subsp. enterica isolated in Poland. Med Dosw Microbiol 2005, 57, 115–130.
  32. Medeiros AA: Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin Infect Dis 1997, 24, 19–45.
  33. Biedenbach DJ, Beach ML, Jones RN: In vitro antimicrobial activity of GAR-936 tested against antibiotic-resistant Gram-positive bloodstream infection isolates and strains producing expended-spectrum β-lactamases. Diagn Microbiol Infect Dis 2001, 40, 173–177.
  34. Morosini MI, Garcia-Castillo M, Coque TM, Valverde A, Novais A, Loza E, Baquero F, Canton R: Antibiotic coresistance in extended-spectrum-β-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother 2006, 50, 2695–2699.
  35. Sorlozano A, Gutierrez J, Salmeron A, Luna JD, Martinez-Checa F, Roman J, Piedrola G: Activity of tigecycline against clinical isolates of Staphylococcus aureus and extended-spectrum β-lactamase-producing Escherichia coli in Granada, Spain. Int J Antimicrob Agents 2006, 28, 532–536.