Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.0
Scopus CiteScore – 3.7 (CiteScore Tracker 3.3)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2010, vol. 19, nr 1, January-February, p. 57–64

Publication type: original article

Language: English

The Influence of Lipopolysaccharides Isolated from Enterobacteriaceae Strains on the Bactericidal Activity of Normal Cord Serum

Wpływ lipopolisacharydów izolowanych ze szczepów należących do rodziny Enterobacteriaceae na bakteriobójcze działanie surowicy pępowinowej

Marlena Kłak1,, Stanisław Jankowski1,

1 Department of Biology and Medical Parasitology, Wroclaw Medical University, Poland

Abstract

Background. The bactericidal effect of serum is an important defense mechanism against infections caused by Gram-negative bacteria such as strains of the Enterobacteriaceae family. In normal cord sera (NCS) the level complement system protein is low, which is why NCS has lower bactericidal activity than normal human serum (NHS). The resistance of bacteria to the bactericidal effect of serum depends on the structure and organization of the bacterial outer membrane. Lipopolysaccharides (LPS) plays a crucial role in the resistance of bacteria.
Objectives. The aim of this study was to investigate the influence of LPS isolated from sensitive strains on the bactericidal activity of NCS in a homologous and a heterologous system.
Material and Methods. The study was carried out on ten Gram-negative strains which have well known O-specific polysaccharides (O-antigens). NCS was used as the source of complement. LPS preparations from C. youngae O1 (LPS O1), E. coli O111 (LPS O111), and P. vulgaris O31 (LPS O31) were used. The influence of LPS on the bactericidal activity of NCS was determined in a homologous and a heterologous system. LPS at two different concentration (0.2 mg/ml and 0.05 mg/ml) was used in the study.
Results. The introduction of LPS to NCS caused a reduction in bactericidal effect and decreased the level of complement activity. The longer the time of pre-incubation of NCS with LPS, the higher the percentage of surviving bacteria. This effect was also dose dependent. It was found that LPS at the higher concentration (0.2 mg/ml) protected the bacteria to a higher degree than LPS at the lower concentration (0.05 mg/ml).
Conclusion. Both the concentration of LPS and the length of pre-incubation with NCS were very important in inhibiting of the bactericidal activity of NCS.

Streszczenie

Wprowadzenie. Bakteriobójcze działanie surowicy jest ważnym mechanizmem obronnym przeciwko zakażeniom spowodowanym przez bakterie Gram-ujemne, takie jak bakterie z rodziny Enterobacteriaceae. Stężenie białek dopełniacza w normalnej surowicy pępowinowej (NSP) jest małe, dlatego jej aktywność jest słabsza niż normalnej surowicy ludzkiej (NSP). Oporność bakterii na bakteriobójcze działanie surowicy zależy od struktury i organizacji ich błony zewnętrznej. Istotną rolę w oporności bakterii odgrywa struktura lipopolisacharydów (LPS).
Cel pracy. Określenie działania LPS izolowanego od szczepów wrażliwych na aktywność bakteriobójczą normalnej surowicy pępowinowej (NSP), zarówno w układzie homologicznym, jak i heterologicznym.
Materiał i metody. Badania przeprowadzono na dziesięciu Gram-ujemnych szczepach o dokładnie poznanej budowie części O-swoistej LPS. Jako źródło dopełniacza stosowano NSP Użyto LPS pochodzący ze szczepów C. youngae O1 (LPS O1), E. coli O111 (LPS O111) i P. vulgaris O31 (LPS O31). Wpływ LPS na blokowanie reakcji bakteriobójczej NSP zbadano zarówno w układzie homologicznym, jak i heterologicznym. W badaniach stosowano dwa stężenia LPS (0,05 mg/ml i 0,2 mg/ml).
Wyniki. Wprowadzenie LPS do NSP spowodowało ograniczenie bakteriobójczego działania surowicy i zmniejszenie stężenia dopełniacza. Im dłuższy był czas preinkubacji LPS z NSP, tym większy był procent przeżywających bakterii. Ten rezultat był również zależny od stężenia LSP. Stwierdzono, że LPS w większym stężeniu (0,2 mg/ml) chroni bakterie silniej niż LPS w niższym stężeniu (0,05 mg/ml).
Wnioski. Zarówno stężenie LPS, jak i długość czasu preinkubacji LPS z surowicą mają duże znaczenie w blokowaniu bakteriobójczej aktywności surowicy.

Key words

lipoploysaccharide, normal cord serum, complement

Słowa kluczowe

lipopolisacharyd, surowica pępowinowa, dopełniacz

References (30)

  1. Zipfel PF, Würzner R, Skerka C: Complement evasion of pathogens: Common strategies are shared by diverse organisms. Mol Immunol 2007, 44, 3850–3857.
  2. Mold C: Role of complement in host defense against bacterial infection. Microbes Infect 1999, 1, 633–638.
  3. Rautemaa R, Meri S: Complement-resistance mechanisms of bacteria. Microbes Infect 1999, 1, 785–794.
  4. Taylor PW: Resistance of bacteria to complement. Virulence Mechanisms of Bacterial Pathogens, J A Roth et al., eds., American Society for Microbiology, Washington. D. C. 1995, 2nd ed., 49–64.
  5. Sim RB, Tsiftsoglou SA: Proteases of the complement system. Biochem Soc Trans 2004, 32, 21–27.
  6. Mielnik G, Gamian A, Doroszkiewicz W: Bactericidal activity of normal cord serum (NCS) against Gram-negative rods sialic acid-containing lipopolysaccharides (LPS). FEMS Immunol Med Microbiol 2001, 31, 169–173.
  7. Bugla-Płoskońska G, Doroszkiewicz W: Bactericidal activity of normal bovine serum (NBS) directed against some Enterobacteriaceae with sialic acid-containing lipopolysaccharides (LPS) as a component of cell wall. Pol J Microbiol 2006, 55, 169–174.
  8. Cisowska A, Jankowski S: The sensitivity of Escherichia coli strains with K1 surface antigen and rods without this antigen to the bactericidal effect of serum. Folia Microbiol 2004, 49, 471–478.
  9. Futoma-Kołoch B, Bugla-Płoskońska G, Doroszkiewicz W, Kaca W: Servival of Proteus mirabilis O3 (S1959), O9 and O18 strains in normal human serum (NHS) correlates with the diversity of their outer membrane proteins (OMPs). Pol J Microbiol 2006, 55, 153–156.
  10. Jankowski S, Rowiński S, Cisowska A, Gamian A: The sensitivity of Hafnia alvei strains to the bactericidal effect of serum. FEMS Immunol Med Microbiol 1996, 13, 59–64.
  11. Merino S, Camprubi S, Alberti S, Benedi VJ, Tomas JM: Mechanisms of Klebsiella pneumoniae resistance to complement-mediated killing. Infect Immun 1992, 60, 2529–2535.
  12. Allen R, Scott GK: Comparison of the effects of different lipopolysaccharides on the serum bactericidal reactions of two strains of Escherichia coli. Infect Immun 1981, 31, 831–832.
  13. Jankowski S, Konrad A, Grzybek-Hryncewicz K: Impaired bactericidal activity of cord sera against Salmonella strains. Arch Immunol Ther Exp 1983, 31, 249–253.
  14. Jankowski S: The role of complement and antibodies in the impaired bactericidal activity of neonatal sera against Gram-negative bacteria. Acta Microbiol Pol 1995, 44, 5–14.
  15. Lassiter HA, Watson SW, Seifring ML and Tanner JE: Complement factor 9 deficiency in serum of human neonates. J Infect Dis 1992, 166, 53–57.
  16. Westphal O, Jann K: Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure. Methods Carbohydr Chem 1965, 5, 83–91.
  17. Kocharova NA, Mieszała M, Zatonsky GV, Staniszewska M, Shashkov QAS, Gamian A, Knirel YA: Structure of the O-polysaccharide of Citrobacter youngae O1 containing an α-D-ribofuranosyl group. Carbohydr Res 2004, 339, 321–325.
  18. Różalski A, Torzewska A, Bartodziejska B, Babicka D, Kwil I, Perepelov AV, Kondakova AN, Senchenkova SN, Knirel YA, Vinogradov EV: Chemical structure, antigenic specificity and the role in the pathogenicity of lipopolysaccharide (LPS, endotoxin) on the example of Proteus vulgaris bacteria. (in Polish) Wiad Chem 2002, 56, 585–604.
  19. Grupta RK, Egan W, Bryla DA, Robbins JB, Szu SC: Comparative immunogenicity of conjugates composed of Escherichia coli O111 O-specific polysaccharide, prepared by treatment with acetic acid or hydrazine, bound to tetanus toxoid by two synthetic schemes. Infect Immun 1995, 63, 2805–2810.
  20. Wedgwood RJ, Janeway CA: Technique for complement titration in human sera. Pediatrics 1953, 11, 569–572.
  21. Bugla‑Płoskońska G, Kiersnowski A, Futoma‑Kołoch B, Doroszkiewicz W: Killing of Gram‑negative bacteria with normal human serum and normal bovine serum: use of lysozyme and complement proteins In the death of Salmonella strains O48. Microb Ecol Published online: 18 march 2009.
  22. Taylor WP: Complement mediated killing of susceptible Gram‑negative bacteria: an elusive mechanism. Exp Clin Immunogenet 1992, 9, 48–56.
  23. Gamian A, Kenne L, Mieszała M, Urlich J, Defaye J: Structure of the Escherichia coli O24 and O56 O-specific sialic-acid-containing polysaccharides and linkage of these structures to the core region in lipopolysaccharides. Eur J Biochem 1994, 225, 1211–1220.
  24. Gamian A, Romanowska E, Szponar B, Dąbrowski U, Dąbrowski J: Structural and immunochemical studies of O-specific polysaccharides of Salmonella Toucra O48 and Citrobacter freundii O37. 2nd Conference International Endotoxin Society, Vienna 1992, Abstr. 72.
  25. Merino S, Camprubi S, Tomas JM: The role of lipopolysaccharide in complement‑mediated killing of Aeromonas hydrophila strains of serotype 0:34. J Gen Microbiol 1991, 137, 1583–1590.
  26. Merino S, Alberti S, Tomas JM: Aeromonas salmonicida resistance to complement-mediated killing. Infect Immun 1994, 62, 5483–5490.
  27. Allen RJ, Scott GK: The effect of purified lipopolysaccharide on the bactericidal reaction of human serum complement. J Gen Microbiol 1980, 117, 65–72.
  28. Joiner KA: Complement evasion by bacteria and parasites. Annu Rev Microbiol 1988, 42, 201–230.
  29. Różalski A: Lipopolysaccharide (LPS) of Gram-negative bacteria – chemical structure, biological activity and significance in the pathogenicity. III. Lipopolysaccharide as virulence factor of Gram-negative bacteria. (in Polish) Post Mikrobiol 1995, 37, 339–365.
  30. Ulevitch RJ: Molecular mechanisms of innate immunity. Immunol Res 2000, 21, 49–54.