Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.4)
Index Copernicus  – 161.11; MEiN – 140 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2010, vol. 19, nr 1, January-February, p. 43–50

Publication type: original article

Language: English

Influence of Simvastatin on Oxido-Redox Status and Nitric Oxide Synthases Protein Concentration in Rat Liver Subjected to “Cold” Ischemia

Wpływ simwastatyny na stan oksydoredukcyjny i stężenie syntetaz tlenku azotu w wątrobach szczurzych poddanych niedokrwieniu „zimnemu”

Małgorzata Trocha1,, Anna Merwid-Ląd1,, Ewa Chlebda1,, Tomasz Sozański1,, Jan Magdalan1,, Małgorzata Pieśniewska1,, Lidia Fereniec-Gołębiewska1,, Halina Gliniak1,, Adam Szeląg1,

1 Department of Pharmacology, Wroclaw Medical University, Poland

Abstract

Background. Hydroxymethylglutaryl-CoA reductase inhibitors (statins) play a great role in oxido-redox status in the liver. “Cold” ischemia could be responsible for liver cell damage.
Objectives. The influence of simvastatin (SV) on oxido-redox status and nitric oxide synthases protein concentration in rat liver in a “cold” ischemia model was evaluated.
Material and Methods. The study was conducted on rat livers. Group C and C24 rats did not receive SV and groups S and S24 received SV intragastrically (25 mg/kg) for 21 days. Alanine and asparagine aminotransferases (ALT, AST) activities were determined to exclude SV-induced liver injury. The livers of groups C and S were homogenized just after isolation and those of groups C24 and S24 were preserved for 24 hours in HTK solution (4°C) before homogenization. Superoxide dismutase (SOD) and catalase (CAT) activities as well as lipid peroxide (LPO) and endothelial and inducible nitric oxide synthase (eNOS and iNOS) concentrations were measured in the liver homogenates.
Results. SV did not alter ALT and AST activity. Significant increases in SOD and CAT activities and eNOS protein concentration were observed in group S compared with group C. After preservation, a significant difference between S24 and C24 was observed only in the case of CAT. No significant differences in LPO and iNOS levels between the groups were found.
Conclusion. SV may exert a protective action on rat liver, which was seen as increased antioxidant parameter activities and eNOS level in the unpreserved group. After 24 hours of “cold” preservation, these properties of SV were maintained only in the case of CAT activity.

Streszczenie

Wprowadzenie. Inhibitory reduktazy hydroksymetyloglutarylo-CoA (statyny) odgrywają znaczącą rolę w wątrobie, wpływając m.in. na jej stan oksydoredukcyjny. „Zimne” niedokrwienie, jakiemu są poddane narządy podczas przeszczepienia, może być odpowiedzialne za ich uszkodzenie.
Cel pracy. Zbadano wpływ simwastatyny (SV) na układ oksydoredukcyjny oraz syntetaz tlenku azotu w modelu wątroby szczurzej poddanej „zimnemu” niedokrwieniu.
Materiał i metody. Doświadczenie zostało przeprowadzone na wątrobach szczurzych. W grupach C i C24 zwierzęta nie otrzymywały SV, podczas gdy w grupach S i S24 – SV była podawana dożołądkowo (25 mg/kg) przez 21 dni. Aby wykluczyć działanie hepatotoksyczne leku, po tym okresie oznaczano aktywność aminotransferazy alaninowej i asparaginianowej (ALT, AST). Wątroby w grupach C i S były homogenizowane bezpośrednio po izolacji z organizmu zwierzęcia. Wątroby w grupach C24 i S24 po izolacji były przechowywane przez 24 godz. w roztworze HTK w temperaturze 4°C, a następnie homogenizowane. W homogenatach wątroby oznaczano aktywności dysmutazy ponadtlenkowej (SOD) i katalazy (CAT) oraz stężenia nadtlenków lipidów (LPO) i syntetaz tlenku azotu – śródbłonkowej (eNOS) i indukcyjnej (iNOS).
Wyniki. Nie wykazano istotnego wpływu SV na aktywność ALT i AST. Znaczący wzrost aktywności SOD, CAT oraz stężenie eNOS obserwowano w grupie S w porównaniu z grupą C. Po okresie przechowywania narządu znaczącą różnicę obserwowano między grupami S24 i C24 jedynie w odniesieniu do aktywności CAT. Nie uwidoczniono żadnych znaczących różnic w stężeniach LPO i iNOS między badanymi grupami.
Wnioski. SV wykazuje ochronne działanie na wątroby niepoddane niedokrwieniu „zimnemu”, odpowiadając za znaczące zwiększenie stężenia eNOS oraz aktywność wskaźników antyoksydacyjnych. Po okresie przechowywania jedynie aktywność CAT utrzymywała się na istotnie wyższym poziomie w grupie otrzymującej badany lek.

Key words

simvastatin, liver, rat, ischemia-reperfusion, oxido-redox status

Słowa kluczowe

simwastatyna, wątroba, szczur, niedokrwienie-reperfuzja, stan oksydoredukcyjny

References (44)

  1. Cobreros A, Sainz L, Lasheras B, Cenarruzabeitia E: Hepatotoxicity of ethanol: protective effect of calcium channel blockers in isolated hepatocytes. Liver 1997, 17, 76–82.
  2. Fan C, Zwacka RM, Engelhardt JF: Therapeutic approaches for ischemia/reperfusion injury in the liver. J Mol Med 1999, 77, 577–596.
  3. Kukan M, Haddad PS: Role of hepatocytes and bile duct cells in preservation-reperfusion injury of liver grafts. Liver Transpl 2001, 7, 381–400.
  4. Scandalios JG: Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 2005, 38, 995–1014.
  5. Wassmann S, Wassmann K, Nickenig G: Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 2004, 44, 381–386.
  6. Liu P, Yin K, Nagele R, Wong PY: Inhibition of nitric oxide synthase attenuates peroxynitrite generation, but augments neutrophil accumulation in hepatic ischemia-reperfusion in rats. J Pharmacol Exp Ther 1998, 284, 1139– 1146.
  7. Peralta C, Rull R, Rimola A, Deulofeu R, Roselló-Catafau J, Gelpí E, Rodés J: Endogenous nitric oxide and exogenous nitric oxide supplementation in hepatic ischemia-reperfusion injury in the rat. Transplantation 2001, 71, 529–536.
  8. Shah V, Haddad FG, Garcia-Cardena G, Frangos JA, Mennone A, Groszmann RJ, Sessa WC: Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 1997, 100, 2923–2930.
  9. Hines IN, Harada H, Flores S, Gao B, McCord JM, Grisham MB: Endothelial nitric oxide synthase protects the post-ischemic liver: potential interactions with superoxide. Biomed Pharmacother 2005, 59, 183–189.
  10. Serracino-Inglott F, Virlos IT, Habib NA, Williamson RCN, Mathie RT: Differential nitric oxide synthase expression during hepatic ischemia-reperfusion. Am J Surg 2003, 185, 589–595.
  11. Simonsen U, Rodriguez-Rodriguez R, Dalsgaard T, Buus NH, Stankevicius E: Novel approaches to improving endothelium-dependent nitric oxide-mediated vasodilatation. Pharmacol Rep 2009, 61, 105–115.
  12. Wassmann S, Nickenig G: Interrelationship of free oxygen radicals and endothelial dysfunction – modulation by statins. Endothelium 2003, 10, 23–33.
  13. Harada H, Pavlick KP, Hines IN, Lefer DJ, Hoffman JM, Bharwani S, Wolf RE, Grisham MB: Sexual dimorphism in reduced-size liver ischemia and reperfusion injury in mice: role of endothelial cell nitric oxide synthase. Proc Natl Acad Sci USA 2003, 100, 739–744.
  14. Hernández-Perera O, Pérez-Sala D, Navarro-Antolín J Sánchez-Pascuala R, Hernández G, Díaz C, Lamas S: Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 1998, 101, 2711–2719.
  15. Parker RA, Huang Q, Tesfamariam B: Influence of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors on endothelial nitric oxide synthase and the formation of oxidants in the vasculature. Atherosclerosis 2003, 169, 19–29.
  16. Kakkis JL, Ke B, Dawson S, Maggard M, Si M, Kaldas F, Cai W, Shau H, Seu P, Sauri H, Busuttil RW, Imagawa DK: Pravastatin increases survival and inhibits natural killer cell enhancement factor in liver transplanted rats. J Surg Res 1997, 69, 393–398.
  17. Zivna H, Zivny P, Palicka V, Simakova E: Influence of high cholesterol diet and pravastatin sodium on the initiation of liver regeneration in rats after partial hepatectomy. Nutrition 2002, 18, 51–55.
  18. Morales AI, Vincente-Sanchez C, Jerkic M, Santiago JM, Sanchez-Gonzales PD, Perez-Barriocanal F, LopezNovoa JM: Effect of quercetin on metallothionein, nitric oxide synthase and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicol Appl Pharmacol 2006, 210, 128–135.
  19. Satoh K: Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin Chim Acta 1978, 90, 37–43.
  20. Johanson LH, Borg HLA: A spectrophotometric method for determination of catalase activity in small tissue sample. Anal Biochem 1988, 174, 331–336.
  21. Zheleva A, Tolekova A, Zhelev M, Dobreva Z, Halacheva K, Popova S: In vivo antioxidant and prooxidant properties of Amanita phalloides mushroom toxins. Trakia J Sci 2005, 3, 34–38.
  22. Imaeda A, Kaneko T, Aoki T, Kondo Y, Nakamura N, Nagase H, Yoshikawa T: Antioxidative effects of fluvastatin and its metabolites against DNA damage in streptozotocin-treated mice. Food Chem Toxicol 2002, 40, 1415–1422.
  23. Watanabe T, Yasunari K, Nakamura M: Antioxidative Actions of Statins: Potential Mechanisms for Antiathersclerotic Effects. Mini Rev Med Chem 2006, 6, 505–508.
  24. Demirbilek S, Tas E, Gurunluoglu K, Kondo Y, Nakamura N, Nagase H, Yoshikawa T: Fluvastatin reduced liver injury in rat model of extrahepatic cholestasis. Pediatr Surg Int 2007, 23, 155–162.
  25. Suzumura K, Yasuhara M, Narita H: Superoxide anion scavenging properties of fluvastatin and its metabolites. Chem Pharm Bull 1999, 47, 1477–1480.
  26. Passi S, Stancato A, Aleo E, Dmitrieva A, Littarru GP: Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA. Biofactors 2003, 18, 113–124.
  27. Sumimoto K, Oku J, Dohi K, Kawasaki T: Lipid peroxidation in transplanted rat liver. Transplant Proc 1990, 22, 2023–2024.
  28. Serrano E, Diaz J, Acosta F, Palenciano CG, Parrilla P, Carbonell LF: Relationship between cold ischemia time and lipid peroxidation in liver transplantation. Transplant Proc 2000, 32, 2648.
  29. Sonmez A, Yilmaz MI, Korkmaz A, Topal T, Caglar K, Kaya A, Eyileten T, Yenicesu M, Oguz Y, Basal S, Ipcioglu OM, Vural A: Hyperbaric oxygen treatment augments the efficacy of cilazapril and simvastatin regimens in an experimental nephrotic syndrome model. Clin Exp Nephrol 2008, 12, 110–118.
  30. Zhu B, Shen H, Zhou J, Lin F, Hu Y: Effects of simvastatin on oxidative stress in streptozotocin-induced diabetic rats: a role for glomeruli protection. Nephron Exp Nephrol 2005, 101, e1–e8.
  31. Carneado J, Alvarez de Sotomayor M, Perez-Guerrero C, Jimenez L, Herrera MD, Pamies E, Martin-Sanz MD, Stiefel P, Miranda M, Bravo L, Marhuenda E: Simvastatin improves endothelial function in spontaneously hypertensive rats through a superoxide dismutase mediated antioxidant effect. J Hypertension 2002, 20, 429–437.
  32. Li L, Li CM, Zhang BY, Hu MD, Li XY, Ran JH, Huang M: Apoptosis of rat liver in cold preservation with custom-designed KYL solution. Hepatobiliary Pancreat Dis Int 2007, 6, 497–503.
  33. Somuncu S, Cakmak M, Dikmen G, Akman H, Kaya M: Ischemia-reperfusion injury of rabbit ovary and protective effect of trapidil: an experimental study. Pediatr Surg Int 2008, 24, 315–318.
  34. Wassmann S, Laufs U, Müller K, Konkol C, Ahlbory K, Bäumer AT, Linz W, Böhm M, Nickenig G: Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 2002, 22, 300–305.
  35. Luo JD, Zhang WW, Zhang GP, Zhong BH, Ou HJ: Effects of simvastatin on activities of endogenous antioxidant enzymes and angiotensin-converting enzyme in rat myocardium with pressure-overload cardiac hypertrophy. Acta Pharmacol Sin 2002, 23, 124–128.
  36. Kurabayashi M, Takeyoshi I, Yoshinari D, Koibuchi Y, Ohki T, Matsumoto K, Morishita Y: NO donor ameliorates ischemia–reperfusion injury of the rat liver with iNOS attenuation. J Invest Surg 2005, 18, 193–200.
  37. Brown GC, Foxwell N, Moncada S: Transcellular regulation of cell respiration by nitric oxide generated by activated macrophages. FEBS Lett 1998, 439, 321–324.
  38. Lefer AM, Scalia R, Lefer DJ: Vascular effects of HMG Co-A-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease. Cardiovasc Res 2001, 49, 281–287.
  39. Sumi D, Hayashi T, Thakur NK, Jayachandran M, Asai Y, Kano H, Matsui H, Iguchi A: A HMG-CoA reductase inhibitor possesses a potent anti-atherosclerotic effect other than serum lipid lowering effects – the relevance of endothelial nitric oxide synthase and superoxide anion scavenging action. Atherosclerosis 2001, 155, 347–357.
  40. Laufs U, Fata VL, Liao JK: Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxiamediated down-regulation of endothelial nitric oxide synthase. J Biol Chem 1997, 272, 31725–31729.
  41. Hierholzer C, Harbrecht B, Menezes JM, Kane J, MacMicking J, Nathan CF, Peitzman AB, Biliar TR, Tweardy DJ: Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J Exp Med 1998, 187, 917–928.
  42. Hsu CM, Wang JS, Liu CH, Chen LW: Kupffer cells protect liver from ischemia-reperfusion injury by an inducible nitric oxide synthase-dependent mechanism. Shock 2002, 17, 280–285.
  43. Wang LM, Tian XF, Song QY, Gao ZM, Luo FW, Yang CM: Expression and role of inducible nitric oxide synthase in ischemia-reperfusion liver in rats. Hepatobiliary Pancreat Dis Int 2003, 2, 252–258.
  44. Lu P, Chen DD, Tian Y, Zhang JH, Wu YH: The protection of the hepatic ischemic preconditioning is concerned with the NO/ET-1 system. Zhongguo Bingli Shengli Zazhi 2000, 16, 901–905.