Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1
5-Year Impact Factor – 2.2
Scopus CiteScore – 3.4 (CiteScore Tracker 3.4)
Index Copernicus  – 161.11; MEiN – 140 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2010, vol. 19, nr 1, January-February, p. 21–31

Publication type: original article

Language: English

Biological Peculiarities of the Analgesic Drug Nefopam in Rats

Biologiczne właściwości nefopamu – leku przeciwbólowego u szczurów

Magdalena Beśka1,, Izabela Walawender1,, Jacek Kasperski2,, Dariusz Skaba3,, Przemysław Nowak1,, Edyta Reichman-Warmusz4,, Ryszard Szkilnik1,

1 Department of Pharmacology, Medical University of Silesia, Zabrze, Poland

2 Department of Prosthetic Dentistry, Medical University of Silesia, Zabrze, Poland

3 Department of Conservative Dentistry and Endodontics Division of Dental Propedeutics, Medical University of Silesia, Zabrze, Poland

4 Department of Histology, Medical University of Silesia, Zabrze, Poland

Abstract

Background. It is well known that besides the typical symptoms of Parkinson’s disease, non-motor disabilities were found to be major contributing factors to impairments in disease-related quality of life. The scope of the non-motor manifestations of Parkinson’s disease is broad and includes depression, pain, disturbances in mood, cognition, autonomic function, sleep, perceptual changes, and impulse control. Pain as a primary symptom is usually located on the side of the body that is most compromised by the disease. The treatment always demands a great adjustment of dopamine agonist, local injections of steroids, massages, physiotherapy, and analgesic therapy, which improve the life quality of patients.
Objectives. The aim of this study was to examine the biological effects of nefopam, a non-opioid analgesic drug, in rats.
Material and Methods. Locomotor activity, stereotypy, catalepsy, depressive behavior, and motor coordination were examined in adult male Wistar rats after nefopam administration. Furthermore, the dopamine (DA) synthesis rate in the frontal cortex, nucleus accumbens, and striatum after nefopam challenge was determined and microdialysis of the striatum was performed.
Results. Nefopam administered in doses of 1, 5, 10, 20, and 40 mg/kg i.p. was without effect on locomotor activity in the rats, although higher doses (20 or 40 mg/kg i.p.) evoked behavioral stereotypy. Nefopam ameliorated motor coordination (assessed with the rotarod test) and diminished the cataleptogenic effect of SCH 23390. In biochemical studies it was shown that nefopam reduced the DA synthesis rate in the frontal cortex, nucleus accumbens and striatum and augmented DA release in the striatum in rats.
Conclusion. These data lead to the proposal that the “behavioral-biochemical profile” of this analgesic justifies its use in patients with motor abnormalities, for example in Parkinson’s disease.

Streszczenie

Wprowadzenie. Wiadomo, że typowym motorycznym objawom choroby Parkinsona towarzyszą inne zaburzenia, które znacznie pogarszają jakość życia pacjentów z tym schorzeniem. Zalicza się do nich depresję, ból, pogorszenie funkcji kognitywnych, zaburzenia snu oraz objawy pochodzące z układu autonomicznego. Spośród wymienionych, ból jest jedną z najczęstszych skarg tych pacjentów. Leczenie wymaga najczęściej korekty dawek stosowanych już agonistów dopaminowych, miejscowych iniekcji kortykosteroidów, masaży, fizykoterapii oraz podawania leków przeciwbólowych.
Cel pracy. Uzyskanie odpowiedzi, czy nefopam – nieopioidowy analgetyk wykazuje inne, oprócz przeciwbólowych, właściwości biologiczne u szczurów.
Materiał i metody. U dorosłych szczurów samców szczepu Wistar zbadano aktywność lokomotoryczną z oceną stereotypii, katalepsję, badanie działania przeciwdepresyjnego oraz koordynację ruchową po podaniu nefopamu w różnych dawkach. Dokonano ponadto oceny szybkości syntezy dopaminy (DA) w korze czołowej, jądrze półleżącym przegrody i prążkowiu po podaniu badanego leku oraz wykonano badanie mikrodializy prążkowia.
Wyniki. Nefopam stosowany w dawkach 1,0; 5,0; 10; 20 oraz 40 mg/kg i.p. (dootrzewnowo) nie wpływał na aktywność lokomotoryczną badanych szczurów. Po podaniu większych dawek (20 lub 40 mg/kg i.p.) obserwowano u zwierząt zachowanie stereotypowe. Nefopam poprawiał natomiast kordynację ruchową (w teście rota-rod) oraz osłabiał kataleptogenne działanie SCH 23390. W badaniach biochemicznych wykazano, że badany lek zmniejszał szybkość syntezy DA w korze czołowej, jądrze półleżącym przegrody oraz prążkowiu, nasilał także uwalnianie DA w prążkowiu u szczurów.
Wnioski. Na podstawie przeprowadzonych badań należy stwierdzić, że „behawioralno-biochemiczny profil” badanego analgetyku przemawia za tym, że może on być z dużym bezpieczeństwem stosowany u osób z zaburzeniami funkcji motorycznych, np. w chorobie Parkinsona.

Key words

nefopam, locomotor activity, motor coordination, catalepsy, dopamine, rats

Słowa kluczowe

nefopam, aktywność lokomotoryczna, koordynacja ruchowa, katalepsja, dopamina, szczury

References (39)

  1. Girard P, Coppé MC, Verniers D, Pansart Y, Gillardin JM: Role of catecholamines and serotonin receptor subtypes in nefopam-induced antinociception. Pharmacol Res 2006, 54, 195–202.
  2. Hunskaar S, Fasmer OB, Broch OJ, Hole K: Involvement of central serotonergic pathways in nefopam-induced antinociception. Eur J Pharmacol 1987, 138, 77–82.
  3. Gomaa AA, Aly SA, Badary MS, Ahmed EA: The immunopotentiator effects of nefopam. Int Immunopharmacol 2007, 7, 266–271.
  4. Novelli A, Groppetti A, Rossoni G, Manfredi B, Ferrero-Gutiérrez A, Pérez-Gómez A, Desogus CM, Fernández-Sánchez MT: Nefopam is more potent than carbamazepine for neuroprotection against veratridine in vitro and has anticonvulsant properties against both electrical and chemical stimulation. Amino Acids 2007, 32, 323–332.
  5. Novelli A, Díaz-Trelles R, Groppetti A, Fernández-Sánchez MT: Nefopam inhibits calcium influx, cGMP formation, and NMDA receptor-dependent neurotoxicity following activation of voltage sensitive calcium channels. Amino Acids 2005, 28, 183–191.
  6. Mattson MP: Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 2008, 1144, 97–112.
  7. Büeler H: Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 2009, 218, 235–246.
  8. Kostrzewa RM, Kostrzewa JP, Brown RW, Nowak P, Brus R: Dopamine receptor supersensitivity: development, mechanisms, presentation, and clinical applicability. Neurotox Res 2008, 14, 121–128.
  9. Nowak P, Kostrzewa RA, Skaba D, Kostrzewa RM: Acute L: -DOPA Effect on Hydroxyl Radicaland DOPAC-Levels in Striatal Microdialysates of Parkinsonian Rats. Neurotox Res 2010, 17, 299–304.
  10. Nowak P, Bortel A, Dabrowska J, Biedka I, Slomian G, Roczniak W, Kostrzewa RM, Brus R: Histamine H(3) receptor ligands modulate L-dopa-evoked behavioral responses and L-dopa derived extracellular dopamine in dopamine-denervated rat striatum. Neurotox Res 2008, 13, 231–240.
  11. Nowak P, Jochem J, Zwirska-Korczala K, Josko J, Noras L, Kostrzewa RM, Brus R: Ontogenetic noradrenergic lesion alters histaminergic activity in adult rats. Neurotox Res 2008, 13, 79–83.
  12. Nowak P, Nitka D, Kwieciński A, Jośko J, Drab J, Pojda-Wilczek D, Kasperski J, Kostrzewa RM, Brus R: Neonatal co-lesion by DSP-4 and 5,7-DHT produces adulthood behavioral sensitization to dopamine D(2) receptor agonists. Pharmacol Rep 2009, 61, 311–318.
  13. Nowak P, Noras L, Jochem J, Szkilnik R, Brus H, Körossy E, Drab J, Kostrzewa RM, Brus R: Histaminergic activity in a rodent model of Parkinson’s disease. Neurotox Res 2009, 15, 246–251.
  14. Chaudhuri KR, Schapira AH: Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 2009, 8, 464–474.
  15. Beiske AG, Loge JH, Rønningen A, Svensson E: Pain in Parkinson’s disease: Prevalence and characteristics. Pain 2009, 141, 173–177.
  16. Przegaliñski E, Filip M, Papla I, Siwanowicz J: Effect of serotonin (5-HT)1B receptor ligands on cocaine sensitization in rats. Behav Pharmacol 2001, 12, 109–116.
  17. Jones BJ, Roberts DJ: The quantitative measurement of motor incoordination in naive mice using an accelerating rota-rod. J Pharm Pharmacol 1968, 20, 302–304.
  18. Iorio LC, Barnett A, Billard W, Gold EH: Benzodiazepines: Structure-activity relationships between Dl receptor blockade and selected pharmacological effects. Adv Exp Med Biol 1986, 204, 1–14.
  19. Porsolt RD, Anton G, Blavet N, Jalfre M: Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978, 47, 379–391.
  20. Carlsson A, Davis JN, Kher W, Lindqvist M, Atack CV: Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn-Schmiedeberg’s Arch Pharmacol 1972, 275, 153–168.
  21. Takeda H, Matsumiya T, Shibuya T: Detection and identification modes for the highly sensitive and simultaneous determination of various biogenic amines by coulometric high-performance liquid chromatography. J Chromatogr 1990, 515, 265–278.
  22. Brus R, Nowak P, Sokoła A, Kotrzewa RM, Shani J: Behavioral and biochemical effects of new central dopamine D3 and D4 receptor antagonists in rats. Pharmacol Rev Comm 2002, 12, 39–59.
  23. Nowak P, Brus R, Oświęcimska J, Sokoła A, Kostrzewa RM: 7-Nitroindazole enhances amphetamine-evoked dopamine release in rat striatum. An in vivo microdialysis and voltammetric study. J Physiol Pharmacol 2002, 53, 251–263.
  24. Rosland JH, Hole K: The effect of nefopam and its enantiomers on the uptake of 5-hydroxytryptamine, noradrenaline and dopamine in crude rat brain synaptosomal preparations. J Pharm Pharmacol 1990, 42, 437–438.
  25. Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A: Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 2003, 278, 12070–12077.
  26. Kasperska A, Brus R, Sokoła A, Kostrzewa RM, Shani J: Sexual differentiation in the central dopaminergic effect of nitric oxide donors and inhibitor on stereotyped behavior changes induced by amphetamine, but not by apomorphine. Pharmacol Rev Comm 1999, 10, 329–339.
  27. Nowak P, Bortel A, Dabrowska J, Oswiecimska J, Drosik M, Kwiecinski A, Opara J, Kostrzewa RM, Brus R: Amphetamine and mCPP effects on dopamine and serotonin striatal in vivo microdialysates in an animal model of hyperactivity. Neurotox Res 2007, 11, 131–144.
  28. Brus R, Nowak P, Szkilnik R, Mikolajun U, Kostrzewa RM: Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity. Neurotox Res 2004, 6, 317–325.
  29. Milesi-Hallé A, McMillan DE, Laurenzana EM, Byrnes-Blake KA, Owens SM: Sex differences in (+)-amphetamineand (+)-methamphetamine-induced behavioral response in male and female Sprague-Dawley rats. Pharmacol Biochem Behav 2007, 86, 140–149.
  30. Sitges M, Reyes A, Chiu LM: Dopamine transporter mediated release of dopamine: role of chloride. J Neurosci Res 1994, 39, 11–22.
  31. Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, Hamilton C, Spencer RC: Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006, 60, 1111–1120.
  32. Thullier F, Lalonde R, Lestienne F: Effects of dopaminergic agents and of an NMDA receptor antagonist on motor coordination in Lurcher mutant mice. Pharmacol Biochem Behav 1999, 63, 213–219.
  33. Bergquist F, Shahabi HN, Nissbrandt H: Somatodendritic dopamine release in rat substantia nigra influences motor performance on the accelerating rod. Brain Res 2003, 973, 81–91.
  34. Andersson DR, Nissbrandt H, Bergquist F: Partial depletion of dopamine in substantia nigra impairs motor performance without altering striatal dopamine neurotransmission. Eur J Neurosci 2006, 24, 617–624.
  35. Khisti RT, Mandhane SN, Chopde CT: Haloperidol-induced catalepsy: a model for screening antidepressants effective in treatment of depression with Parkinson’s disease. Indian J Exp Biol 1997, 35, 1297–1301.
  36. Castagné V, Porsolt RD, Moser P: Use of latency to immobility improves detection of antidepressant-like activity in the behavioral despair test in the mouse. Eur J Pharmacol 2009, 616, 128–133.
  37. Hervas Queiroz CMT, Adell A, Artigas F: Role of uptake inhibition and autoreceptor activation in the control of 5-HT release in the frontal cortex and dorsal hippocampus of the rat. Brit J Pharmacol 2000, 130, 160–166.
  38. Stenfors C, Yu H, Ross SB: Pharmacological characterisation of the decrease in 5-HT synthesis in the mouse brain evoked by the selective serotonin re-uptake inhibitor citalopram. Naunyn Schmiedebergs Arch Pharmacol 2001, 363, 222–232.
  39. Dremencov E, El Mansari M, Blier P: Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area. J Psychiatry Neurosci 2009, 34, 223–229.