Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.8)
Index Copernicus  – 171.00; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2009, vol. 18, nr 3, May-June, p. 221–233

Publication type: original article

Language: English

Enolase from Klebsiella Pneumoniae and Human Muscle Cells II. Kinetic Parameters and Sensitivity to Fluoride and Phosphate Inhibitors

Enolaza z Klebsiella pneumoniae i mięśniowa enolaza ludzka II. Parametry kinetyczne, wrażliwość na inhibitory fluorkowe i fosforanowe

Jadwiga Pietkiewicz1,, Iwona Bednarz−Misa1,, Katarzyna Jermakow2,, Andrzej Gamian1,3,

1 Department of Medical Biochemistry, Wroclaw Medical University, Poland

2 Department of Microbiology, Wroclaw Medical University, Poland

3 Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland

Abstract

Background. This report concerns the catalytic properties of enolase, a glycolysis pathway enzyme, obtained from the cytoplasm of Klebsiella pneumoniae cells. Comparative analysis of this enzyme with human muscle−specific enolase was performed. For both enzymes, optimal pH and KM and kcat values were determined and their activation by divalent cations and the inhibitory effects of fluoride and phosphate ions were studied.
Material and Methods. Homogeneous enzymes from the cytosol of K. pneumoniae cells and human muscle, with specific activities of 31 and 75 U/mg, respectively, were obtained according to methods presented previously.
Results. K. pneumoniae enolase catalyzed the conversion of 2−phospho−D−glycerate (2−PGA) to phosphoenolpyruvate (PEP) at pHopt 7.8, with KM = 0.425 mM and kcat = 52.7 s−1. Divalent cations were found to be obligatory for bacterial enzyme activity, but with an excess of Mg2+, Mn2+, or Zn2+ ions an inhibitory effect was observed, with KI values of 3.249, 1.266, and 2.34, respectively. Maximal specific activity with respect to 2−PGA was achieved in the presence of 1 mM Mg2+. In addition, magnesium showed the greatest kcat (68.85 s−1) of the activated reaction. The inhibition of K. pneumoniae enolase by phosphate and fluoride ions for 2−PGA→PEP conversion was established. At a high phosphate concentration, noncompetitive inhibition was found and at a lower concentration competitive inhibition, with KI values of 55 mM and 2.2 mM, respectively. The inhibitory effect of fluoride alone was noncompetitive, but it was competitive in the presence of a low phosphate level and KI values changed from 0.90 mM to 0.18 mM.
Conclusion. The kinetic parameters of K. pneumoniae cytosolic enolase and human muscle−specific enolase determined here indicate that both enzymes have similar essential catalytic properties, comparable to enolases from other sources. K. pneumoniae enolase is activated by Mg2+, Mn2+, and Zn2+ ions, but with less efficiency than the human muscle−specific enzyme. The bacterial enzyme appeared to be more sensitive to inhibition by an excess of Mg2+ and Mn2+ ions, but a weaker effect in the presence of Zn2+ compared with Mn2+ was observed. The KI values determined for both enolases with fluoride ions alone revealed that the bacterial enzyme is more resistant to inhibition by fluoride than the human enzyme. Enolase from K. pneumoniae, like the human enzyme, also reveals more susceptibility to fluoride in the presence of a low concentration of phosphate, but the KI values show that bacterial enzyme formed a weaker complex with Funder those conditions. The K. pneumoniae and human muscle−specific enolases preserved catalytic function stability despite the large distance between these two proteins in the phylogenic tree, which suggests highly conservative structures of their catalytic center.

Streszczenie

Wprowadzenie. W doniesieniu przedstawiono katalityczne właściwości enzymu szlaku glikolizy, enolazy z cytoplazmy komórek bakteryjnych Klebsiella pneumoniae oraz porównano je z wartościami otrzymanymi dla enolazy mięśniowo−specyficznej człowieka. Określono wartości optimum pH, Km, kcat oraz zbadano zjawisko aktywacji przez kationy dwuwartościowe i wpływ hamujący jonów fosforanowych i fluorków.
Materiał i metody. Wdoświadczeniach stosowano homogenną enolazę bakterii K. pneumoniae i mięśniową człowieka o aktywności specyficznej, odpowiednio: 31 U/mg i 75 U/mg. Enzymy oczyszczano według metod opisanych w poprzednim doniesieniu.
Wyniki. Enolaza z komórek bakteryjnych Klebsiella pneumoniae katalizuje przemianę 2−fosfo−D−glicerynianu (2−PGA) w fosfoenolopirogronian (PEP) w pHopt 7,8, z KM 0,425 mM i kcat 52,7 s−1. Kationy dwuwartościowe są niezbędne do zachowania aktywności enzymu, ale przy nadmiarze jonów Mg2+, Mn2+ lub Zn2+ obserwowano działanie hamujące z KI, odpowiednio: 3,249, 1,266 i 2,34 mM. W obecności 1 mM Mg2+ enzym wykazywał maksymalną aktywność katalityczną i osiągał najwyższą kcat – 68,85 s−1. Badano hamowanie enolazy bakteryjnej przez jony fosforanowe i fluorkowe. W zakresie wysokich stężeń fosforanów wykazano wobec substratu 2−PGA hamowanie niekompetycyjne, a w zakresie niższych – kompetycyjne, z KI odpowiednio: 55 mM i 2,2 mM. Inhibicja aktywności enzymu przez jony fluoru miała charakter niekompetycyjny, ale w obecności małego stężenia fosforanów zmieniała się na kompetycyjny, a KI osiągała wartości, odpowiednio: 0,90 mM i 0,18 mM.
Wnioski. Kinetyczne parametry enolazy cytozolowej K. pneumoniae i mięśniowej enolazy ludzkiej określone w tych badaniach wskazują, że oba enzymy mają podobne zasadnicze własności, porównywalne do enolaz z innych organizmów. Enolaza z komórek K. pneumoniae jest aktywowana przez jony Mg2+, Mn2+ i Zn2+, ale z mniejszą skutecznością niż ludzki enzym mięśniowo−specyficzny. Bakteryjna enolaza wydaje się ponadto bardziej wrażliwa na hamowanie przez nadmiar jonów Mg2+ i Mn2+, ale hamujący wpływ kationów cynku jest słabszy w porównaniu z działaniem manganu. Wartości KI określone dla obu enolaz wobec jonów fluorkowych wskazują, że enzym bakteryjny jest bardziej oporny na hamowanie przez fluorki niż enzym ludzki. Enolaza z bakterii K. pneumoniae wykazuje, podobnie jak enolaza ludzka, większą podatność na hamowanie fluorkami w obecności małych stężeń jonów fosforanowych. Wartości KI wskazują jednak, że enzym bakteryjny w tych warunkach tworzy słabsze, niż ludzki, kompleksy z inhibitorem. Bakteryjna i ludzka enolaza zachowują stabilną funkcję katalityczną mimo dużej odległości obu białek w drzewie filogenetycznym, co świadczy o wysokiej konserwatywności struktur ich centrów katalitycznych.

Key words

enolase, kinetic parameters, Klebsiella pneumoniae, enzyme inhibitors

Słowa kluczowe

enolaza, parametry kinetyczne, Klebsiella pneumoniae, inhibitory enzymu

References (32)

  1. Wold F: Enolase. In: The Enzymes, Eds.: Boyer P.D., Acad. Press, New York 1971, 5, 499–538
  2. Poyner RR, Cleland WW, Reed GH: Role of metal ions in catalysis by enolase: an ordered kinetic mechanism for a single substrate enzyme. Biochemistry 2001, 40, 8009–8017.
  3. Lebioda L, Stec B: Mechanism of enolase: the crystal structure of enolase−Mg2(+)2−phosphoglycerate/phosphoenolpyruvate complex at 2.2−Å resolution. Biochemistry 1991, 30, 2817–2822.
  4. Qin J, Chai G, Brewer JM, Lovelace LL, Lebioda L: Fluoride inhibition of enolase: Crystal structure and thermodynamics. Biochemistry 2006, 45, 793–800.
  5. Chin CC, Brewer JM, Eckard E, Wold F: The amino acid sequence of yeast enolase. Preparation and characterization of peptides produced by chemical and enzymatic fragmentation. J Biol Chem 1981, 256, 1370–1376.
  6. Lebioda L, Zhang E, Lewinski K, Brewer JM: Fluoride inhibition of yeast enolase: crystal structure of the enolase−Mg(2+)−F(−)−Pi complex at 2.6 Å resolution. Proteins 1993, 16, 219–225.
  7. Schurig H, Rutkat K, Rachel R, Jaenicke R: Octameric enolase from the hyperthermophilic bacterium Termotoga maritima: Purification, characterization, and image processing. Protein Sci 1995, 4, 228–236.
  8. Pietkiewicz J, Kustrzeba−Wójcicka I, Wolna E: Purification and properties of enolase from carp (Cyprinus Carpio). Comparison with enolases from mammals’ muscles and yeast. Comp Biochem Physiol B 1983, 75, 693–698.
  9. Baranowski T, Wolna E: Enolase from human muscle. In: Methods in Enzymology. Eds.: Colowick SP, Kaplan NO, Acad. Press, New York 1975, Vol. XLII, pp. 335–338.
  10. Kustrzeba−Wójcicka I, Golczak M: Enolase from Candida albicans – purification and characterization. Comp Biochem Physiol B 2000, 126, 109–120.
  11. Pancholi V: Multifunctional alpha−enolase: its role in diseases. Cell Mol Life Sci 2001, 58, 902–920.
  12. Seweryn E, Pietkiewicz J, Szamborska A, Gamian A: Enolase on the surface of prokaryotic and eukaryotic cells is a receptor for human plasminogen. Post Hig Med Dośw 2007, 61, 672–682.
  13. Witkowska D, Pietkiewicz J, Szostko B, Danielewicz R, Masłowski L, Gamian A: Antibodies against human beta–enolase recognize a 45−kDa bacterial cell wall outer membrane protein. FEMS Immunol Med Microbiol 2005, 45, 53–56.
  14. Bednarz−Misa I: Enolase from K. pneumoniae cells. PhD Thesis, 2007.
  15. Bednarz−Misa I, Pietkiewicz J, Banaś T, Gamian A: Enolase from K. pneumoniae and human muscle cells. I. Purification and comparative molecular studies. Adv Clin Exp Med 2009, 18, 1, 71–78.
  16. Dixon M, Webb EC: The Enzymes. Ed.: Longman, London 1979, pp. 327–330.
  17. Polidori E, Saltarelli R, Ceccaroli P, Buffalini M, Pierleoni R, Palma F, Bonfante P, Stocchi V: Enolase from the ectomycorrhizal fungus Tuber borchii Vittad.: biochemical characterization, molecular cloning, and localization. Fungal Genet Biol 2004, 41, 157–167.
  18. Sijbradi R, Blaauwen TD, Tame JR, Oudega B, Luirnh J, Otto BR: Characterization of an iron−regulated alpha−enolase of Bacteroides fragilis. Microb Infect 2005, 7, 9–18.
  19. Merkulova T, Lucas M, Jabet C, Lamandé N, Rouzeau J−D, Gros F, Lazar M, Keller A: Biochemical characterization of the mouse muscle−specific enolase: developmental changes in electrophoretic variants and selective binding to other proteins. Biochem J 1997, 323, 791–800.
  20. Kornblatt MJ, Zheng SX, Lamande N, Lazar M: Cloning, expression and mutagenesis of a subunit contact of rabbit muscle−specific (ββ) enolase. Biochim Biophys Acta 2002, 1597, 311–319.
  21. Bunick FJ, Kashket S: Enolases from fluoride−sensitive and fluoride−resistant Streptococci. Infect Immun 1981, 34, 856–863.
  22. Spring TG, Wold F: The purification and characterization of Escherichia coli enolase. J Biol Chem 1971, 246, 6797–6802.
  23. Reed GH, Poyner RR, Larsen TM, Wedekind, JE, Rayment I: Structural and mechanistic studies of enolase. Curr Opin Struct Biol 1996, 6, 736–746.
  24. Wedekind JE, Reed GH, Rayment I: Octahedral coordination at the high affinity metal site in enolase: crystallographic analysis of the MgII−enzyme complex from yeast at 1.9−Å resolution. Biochemistry 1995, 34, 4325–4330.
  25. Chai G, Brewer JW, Lovelace LL, Aoki T, Minor W, Lebioda L: Expression, purification and the 1.8 Å resolution crystal structure of human neuron specific enolase. J Mol Biol 2004, 341, 1015–1021.
  26. Zhang E, Hatada M, Brewer JM, Lebioda, L: Catalytic metal ion binding in enolase: the crystal structure of an enolase−Mn2+−phosphoacetonhydroxamate complex at 2.4 Å resolution. Biochemistry 1994, 33, 6295–6300.
  27. Kornblatt MJ: Changing the metal ion selectivity of rabbit muscle enolase by mutagenesis: effects of the G 37 A and G 41 A mutations. Biochim Biophys Acta 2005, 1748, 20–25.
  28. Wang T, Himoe A: Kinetics of the rabbit muscle enolase−catalyzed dehydration of 2−phosphoglycerate. J Biol Chem 1974, 249, 3895–3902.
  29. Zhang E, Brewer JM, MinorW, Carreira LH, Lebioda L: Mechanism of enolase: the crystal structure of assymetric dimer enolase−2−phosphoglycerate/enolase−phosphoenolpyruvate at 2.0 Å resolution. Biochemistry 1997, 36, 12526–12534.
  30. Kaufmann M, Bartholmes P: Purification, characterization and inhibition by fluoride of enolase from Streptococcus mutans DSM 320523. Caries Res 1992, 26, 110–116.
  31. Larsen TM, Wedekind JE, Rayment, Reed GH: A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2−phosphoglycerate and phosphoenolpyruvate at 1.8 Å resolution. Biochemistry 1996, 35, 4349–4358.
  32. Guha−Chowdhury N, Clark AG, Sissons CH: Inhibition of purified enolase from oral bacteria by fluoride. Oral Microbiol Immunol 1997, 12, 91–97.