Advances in Clinical and Experimental Medicine

Title abbreviation: Adv Clin Exp Med
JCR Impact Factor (IF) – 2.1 (5-Year IF – 2.0)
Journal Citation Indicator (JCI) (2023) – 0.4
Scopus CiteScore – 3.7 (CiteScore Tracker 3.3)
Index Copernicus  – 161.11; MNiSW – 70 pts

ISSN 1899–5276 (print)
ISSN 2451-2680 (online)
Periodicity – monthly

Download original text (EN)

Advances in Clinical and Experimental Medicine

2006, vol. 15, nr 6, November-December, p. 989–994

Publication type: original article

Language: English

Influence of N,N−Diethyl−2−[4−(Phenylmethyl) Phenoxy]Ethanamine (DPPE) on the Proliferation of Selected Cell Lines in vitro

Wpływ N,N−dietylo−2−[4−(fenylometylo)fenoksy]etanaminy (DPPE) na proliferację wybranych linii komórkowych in vitro

Anna Merwid−Ląd1,, Małgorzata Trocha1,, Elżbieta Gębarowska2,, Maciej Zabel2,, Adam Szeląg1,

1 Department of Pharmacology, Silesian Piasts University of Medicine in Wrocław, Poland

2 Department of Histology and Embryology, Silesian Piasts University of Medicine in Wrocław, Poland

Abstract

Background. Little is known of the effects of N,N−diethyl−2−[4−(phenylmethyl)phenoxy]ethanamine (DPPE) on cell proliferation. Some studies indicate that DPPE inhibits cell proliferation and differentiation, especially under in vitro conditions, but the in vivo effect is not so clear. It stimulated the growth of chemically induced breast cancer in rat, for example, but inhibited the proliferation of human breast cancer cells in vitro.
Objectives. The aim of this study was to evaluate the effect of DPPE on the proliferation of neoplastic and normal cell lines in vitro.
Material and Methods. The study was carried out on four cell lines: human melanoma (BM), human breast cancer (MCF−7), human gastric cancer (EPG−85−257), and mouse normal fibroblasts (3T3−Balb). They were incubated under standard conditions in medium containing 10% fetal calf serum and a solution of L−glutamine and antibiotics. DPPE was used at concentrations of 400, 40, 4, and 0.4 μg/ml. A cell culture of 2 × 104 cells/ml density was established and 72 hours later the cells were counted, thus providing a preliminary control value. After changing the medium and supplementation with DPPE, the cells were incubated for another 72 hours and counted again. The final control (in the case where DPPE was not added) and final results (in the cases where DPPE was added) were established. The test value and test index were calculated from special formulae.
Results. Human melanoma and mice normal fibroblasts were very sensitive to DPPE in the two higher concentrations (400 and 40 μg/ml); their proliferation was strongly inhibited by DPPE. Human breast cancer and human gastric cancer were slightly sensitive to DPPE in the two higher concentrations; their proliferation was slightly inhibited by DPPE. At a lower concentration (4 μg/ml), only the human melanoma cells were slightly sensitive to DPPE; in this case, the proliferation of human melanoma cells was also inhibited by DPPE, but not as strongly as in the case of the two higher concentrations. Other cell lines were not sensitive to DPPE in the two lower concentrations (4 and 0.4 μg/ml) and proliferation was not inhibited.
Conclusion. Monotherapy of cancer with DPPE is rather not possible due to, among other reasons, its toxicity to normal cells. However, adjuvant therapy with DPPE cannot be excluded. Further studies are necessary.

Streszczenie

Wprowadzenie. Niewiele wiadomo o wpływie N,N−dietylo−2−[4−(fenylometylo)fenoksy]etanaminy (DPPE) na proliferację komórek. Niektóre badania wskazują, że DPPE hamuje proliferację i różnicowanie się komórek, zwłaszcza in vitro, działanie DPPE in vivo nie jest jednak tak jednoznaczne. DPPE pobudza np. wzrost wyindukowanego chemicznie raka sutka u szczurów, chociaż hamuje proliferację komórek raka sutka in vitro.
Cel pracy. Określenie wpływu DPPE na proliferację wybranych linii komórek prawidłowych i nowotworowych w warunkach hodowli in vitro.
Materiał i metody. Badanie zostało przeprowadzone na czterech liniach komórkowych: ludzkiego czerniaka (BM), ludzkiego raka sutka (MCF−7), ludzkiego raka żołądka (EPG−85−257) oraz mysich prawidłowych fibroblastach (3T3−Balb). Wszystkie linie komórkowe były inkubowane w standardowych warunkach, podłoże hodowlane zawierało dodatek 10% płodowej surowicy cielęcej oraz roztwór L−glutaminy i antybiotyków. W doświadczeniu zastosowano następujące stężenia DPPE: 400, 40, 4 i 0,4 μg/ml. Komórki były liczone po 72 godz. od założenia hodowli o gęstości 2 × 104 kom/ml, co było kontrolą wstępną. Po wymianie medium hodowlanego i dodaniu badanego związku w odpowiednich stężeniach komórki były inkubowane przez kolejne 72 godz., a następnie liczone, co było kontrolą ostateczną (gdy nie dodano DPPE) lub wynikiem ostatecznym (gdy dodano DPPE do hodowli). Wartość testu oraz indeks testu wyliczono na podstawie odpowiednich wzorów.
Wyniki. Ludzki czerniak i rak sutka były wrażliwe na działanie DPPE zastosowane w dwóch większych stężeniach (400 i 40 μg/ml). Proliferacja komórek tych dwóch linii została w znacznym stopniu zahamowana przez DPPE. Ludzki rak sutka oraz rak żołądka były mało wrażliwe na działanie DPPE w tych samych stężeniach. Proliferacja komórek tych dwóch linii była hamowana słabiej niż w przypadku poprzednich dwóch linii komórkowych. Gdy DPPE zastosowano w mniejszym stężeniu (4 μg/ml), tylko linia ludzkiego czerniaka była mało wrażliwa. Proliferacja komórek czerniaka ludzkiego była hamowana słabiej niż w przypadku większych stężeń DPPE. Pozostałe linie komórkowe nie były wrażliwe na badany związek zastosowany w dwóch mniejszych stężeniach (4 oraz 0,4 μg/ml), ich proliferacja nie była hamowana przez badany związek.
Wnioski. Terapia chorób nowotworowych samym DPPE wydaje się raczej mało prawdopodobna, chociażby z powodu jego toksyczności wobec komórek prawidłowych. Nie można jednak wykluczyć zastosowania tego związku w terapii wspomagającej klasyczną chemioterapię.

Key words

DPPE, neoplastic cells, proliferation, in vitro studies

Słowa kluczowe

DPPE, komórki nowotworowe, proliferacja, badania in vitro

References (26)

  1. Brandes LJ, Hermonat MW: A diphenylmethane derivative specific for the antiestrogen binding site found in rat liver microsomes. Biochem Biophys Res Comm 1984, 123, 724–728.
  2. Hiramatsu H, Kikuchi Y, Kudoh K, Kita T, Tode T, Nagata I: Growth−inhibitory effects of N,N−diethyl−2−[4− (phenylmethyl)phenoxy]−ethanamine−HCl combined with cisplatin on human ovarian cancer cells inoculated into nude mice. Japan J Cancer Res 1997, 88, 1003–1008.
  3. Kroeger EA, Brandes LJ: Evidence that tamoxifen is a histamine antagonist. Biochem Biophys Res Comm 1985, 131, 750–755.
  4. Brandes LJ, Queen GM, LaBella FS: N,N−diethyl−2−[4−(phenylmethyl)−phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isoenzymes that metabolize antineoplastic drugs. Cancer Chemother Pharm 2000, 45, 298–304.
  5. LaBella FS, Queen GM, Brandes LJ: Interactive binding at cytochrome P−450 of cell growth regulatory bioamines, steroid hormones, antihormones, and drugs. J Cell Biochem 2000, 76, 686–694.
  6. Reyno L, Seymour L, Tu D, Dent S, Gelmon K, Walley B, Pluzanska A, Gorbunova V, Garin A, Jassem J, Pienkowski T, Dancey J, Pearce L, MacNeil M, Marlin S, Lebwohl D, Voi M, Pritchard K: Phase III study of N,N−diethyl−2−[4−(phenylmethyl) phenoxy]ethanamine (BMS−217380−01) combined with doxorubicin versus doxorubicin alone in metastatic/recurrent breast cancer: National Cancer Institute of Canada Clinical Trials Group Study MA.19. J Clin Oncol 2004, 22, 269–276.
  7. Brandes LJ, Bogdanovic RP, Tong J, Davie JR, LaBella FS: Intracellular histamine and liver regeneration: high affinity binding of histamine to chromatin, low affinity binding to matrix, and depletion of a nuclear storage pool following partial hepatectomy. Biochem Biophys Res Comm 1992, 184, 840–847.
  8. Brandes LJ, Davie JR, Paraskevas F, Sukhu B, Bogdanovic RP, LaBella FS: The antiproliferative potency of histamine antagonists correlates with inhibition of binding of [3H]−histamine to novel intracellular receptors (HIC) in microsomal and nuclear fractions of ral liver. Agents Actions 1991, 33, 325–342.
  9. Brandes LJ, La Bella FS: Histamine and calcium are independently regulated intracellular mediators of lymphocyte mitogenesis. Biochem Biophys Res Comm 1992, 182, 786–793.
  10. LaBella FS, Queen G, Glavin G, Durant G, Stein D, Brandes LJ: H3 receptor antagonist, thioperamide, inhibits adrenal steroidogenesis and histamine binding to adrenocortical microsomes and binds to cytochrome P450. Br J Pharmacol 1992, 107, 161–164.
  11. Brandes LJ, Bogdanovic RP, Cawker MD, La Bella FS: Histamine and growth: interaction of antiestrogen binding site ligands with a novel histamine site that may be associated with calcium channels. Cancer Res 1987, 47, 4025–4041.
  12. Brandes LJ, LaBella FS, Warrington RC: Increased therapeutic index of antineoplastic drugs in combination with intracellular histamine antagonists. J Natl Cancer Inst 1991, 83, 1329–1336.
  13. Veszely G, Furesz J, Pallinger E, Horkay B, Falus A: Effect of alpha−FMH and DPPE on colony−forming properties of human peripheral progenitor cells. Curr Medicin Chem 2002, 9, 1349–1357.
  14. Brandes LJ, Beecroft WA, Hogg GR: Stimulation of in vivo tumor growth and phorbol ester–induced inflammation by N,N−diethyl−2−[4−(phenylmethyl)−phenoxy]ethanamine HCl, a potent ligand for intracellular histamine receptors. Biochem Biophys Res Comm 1991, 179, 1297–1304.
  15. Kudoh K, Kikuchi Y, Hiramatsu H, Hirata J, Yamamoto K, Kita T, Nagata I: Enhancement of antitumour activity of cisplatin by N,N−diethyl−2−[4−(phenyl−methyl) phenoxy] ethanamine HCl in human ovarian cancer cells with intrinsicor acquired resistance to cisplatin. Eur J Cancer 1997, 33, 122–128.
  16. Zabel M, Kaczmarek A, Rozmiarek A, Markowska J: Test of neoplastic cells sensitivity to the cytotoxic drugs in vitro vs. clinical effect (article in Polish). Wsp Onkol 1997, 2, 17–19.
  17. Brandes LJ, Simons KJ, Bracken SP, Warrington RC: Results of a clinical trial in humans with refractory cancer of the intracellular histamine antagonist, N,N−diethyl−2−[4−(phenylmethyl)phenoxy]ethanamine−HCl, in combination with various single antineoplastic agents. J Clin Oncol 1994, 12, 1281–1290.
  18. Falus A, Laszlo V, Radvany Z, Hegyesi H, Kiss B, Bencsath M, Darvas Z: Histidine decarboxylase and intracellular histamine in melanoma cells and in a T cell line. Inflamm Res 1997, 46, Suppl 1, S51–S52.
  19. Brandes LJ, Friesen LA: Can the clinical course of cancer be influenced by non−antineoplastic drugs? CMAJ 1995, 153, 561–566.
  20. Suonio E, Tuomisto L, Alhava E: Effects of histamine, H1, H2 and Hic receptor antagonists and alpha−fluoromethylhistidine on the growth of human colorectal cancer in the subrenal capsule assay. Agent Actions 1994, 41, Spec No, C118–C120.
  21. Szincsak N, Hegyesi H, Hunyadi J, Falus A, Juhasz I: Different H2 receptor antihistamines dissimilarly retard the growth of xenografted human melanoma cells in immunodeficient mice. Cell Biol Int 2002, 26, 833–836.
  22. Szincsak N, Hegyesi H, Hunyadi J, Martin G, Lazar−Molnar E, Kovacs P, Rivera E, Falus A, Juhasz I: Cimetidine and a tamoxifen derivate reduce tumour formation in SCID mice xenotransplanted with a human melanoma cell line. Melanoma Res 2002, 12, 231–240.
  23. Brandes LJ, Bogdanovic RP: New evidence that the antiestrogen binding site may be a novel growth−promoting histamine receptor (?H3) which mediates the antiestrogen and antiproliferative effects of tamoxifen. Biochem Biophys Res Comm 1986, 134, 601–608.
  24. Khoo K, Brandes LJ, Reyno L, Arnold A, Dent S, Vandenberg T, Lebwohl D, Fisher B, Eisenhauer E: Phase II trial of N,N−diethyl−2−[4−(phenylmethyl)−phenox]ethanamine. HCl and doxorubicin chemotherapy in metastatic breast cancer: A National Cancer Institute of Canada clinical trials group study. J Clin Oncol 1999, 17, 3431–3437.
  25. Grosman N: Influence of DPPE on histamine release from isolated rat mast cells. Agents Actions 1994, 41, 1–4.
  26. Molnar EL, Cricco G, Martin G, Darvas Z, Hegyesi H, Fitzsimons C, Bergoc R, Falus A, Rivera E: Histamine as a potential autocrine regulator of melanoma. Inflamm Res 2001, 50, Suppl 2, S102–S103.